Startseite Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)

  • Katarína Klubicová , Monika Szabová , Ludovit Skultety , Gabriela Libiaková und Andrea Hricová EMAIL logo
Veröffentlicht/Copyright: 24. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Amaranth, a staple food source in ancient Aztec, Maya and Inca cultures, has been recognized as a 21st century crop. This superfood, known as Inca wheat, attracts the worldwide attention of researchers and farmers for its superior agronomical and technological properties but especially because of its exceptional nutritive value. A combination of two-dimensional electrophoresis (2-DE) with MS facilitating the effective differentiation of 13 classes of Amaranthus cruentus L. “Ficha” mature seed proteins was used in the current study. The best resolution results in the 2-DE were obtained using immobilised pH gradients strips with a pH range of 5–8. Out of the 461 spots detected, 249 were successfully identified by LC-MS/MS analysis, making this the most inclusive protein profile of mature amaranth seed. Unknown proteins represented the most abundant class of proteins (59), the second most abundant category was related to energy (46) and then to seed storage proteins (43). These results expand the knowledge of the amaranth seed proteome and it is expected that the data presented here will contribute to further in-depth characterisation of Amaranthus seeds.

Acknowledgements

This work was co-funded by the VEGA grant agency project no. 2/0066/13: Exploitation of modern biotechnologies in amaranth breeding programme, VEGA project no. 2/0041/16: Molecular methods in breeding of naturally gluten-free amaranth and European Community project no. 26220220180: Building Research Centre “AgroBioTech”.


Supplementary data

Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0065).


References

Adeyemi, A., Togun, R. A., Ogunbiyi, O. A., & Aboderin, A. (1994). Observations on the haemagglutinins from the seeds of Dioclea reflexa (Hook). Nigerian Journal of Biochemistry, 9, 26–36.Suche in Google Scholar

Ajomale, K., Binutu, O. O., Togun, R. A., & Aboderin, A. (1997). A galactose-binding lectin from the seeds of Caesalpinia bonduc (Linn.) Roxb. (Caesalpiniaceae). Nigerian Journal of Biochemistry and Molecular Biology, 13, 23–28.Suche in Google Scholar

Alais, C., & Linden, G. (1991). Food biochemistry. New York, NY, USA: Ellis Horwood.Suche in Google Scholar

Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in-vitro antioxidant activity of amaranth, quinoa and buckwheat as affected by sprouting andbread baking. Food Chemistry, 119, 770–778. DOI: 10.1016/j.foodchem.2009.07.032.10.1016/j.foodchem.2009.07.032Suche in Google Scholar

Barba de la Rosa, A. P., Paredez-Lopez, O., & Gueguen, J. (1992). Characterization of amaranth globulins by ultracentrifugation and chromatographic techniques. Journal of Agricultural Food Chemistry, 40, 937–940. DOI: 10.1021/jf00018a003.10.1021/jf00018a003Suche in Google Scholar

Barth, C., DeTullio, M., & Conklin, P. L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 57, 1657–1665. DOI: 10.1093/jxb/erj198.10.1093/jxb/erj198Suche in Google Scholar

Baud, S., Vaultier, M. N., & Rochat, C. (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany, 55, 397–409. DOI: 10.1093/jxb/erh047.10.1093/jxb/erh047Suche in Google Scholar

Berganza, B. E., Moran, A. W., Rodríguez, G. M., Coto, N. M., Santamaría, M., & Bressani, R. (2003). Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods for Human Nutrition, 58, 1–6. DOI: 10.1023/b:qual.0000041143.24454.0a.10.1023/b:qual.0000041143.24454.0aSuche in Google Scholar

Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., van Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T. M., Terryn, N., Gielen, J., Villarroel, R., De Clerck, R., Van Montagu, M., Lecharny, A., Auborg, S., Gy, I., Kreis, M., Lao, N., Kavanagh, T., Hempel, S., Kotter, P., Entian, K. D., Rieger, M., Schaeffer, M., Funk, B., Mueller-Auer, S., Silvey, M., James, R., Montfort, A., Pons, A., Puigdomenech, P., Douka, A., Voukelatou, E., Milioni, D., Hatzopoulos, P., Piravandi, E., Obermaier, B., Hilbert, H., Düsterhöft, A., Moores, T., Jones, J. D. G., Eneva, T., Palme, K., Benes, V., Rechman, S., Ansorge, W., Cooke, R., Berger, C., Delseny, M., Voet, M., Volckaert, G., Mewes, H.W., Klosterman, S., Schueller, C., & Chalwatzis, N. (1998). Analysis of 19 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488. DOI: 10.1038/35140.10.1038/35140Suche in Google Scholar

Bhuiyan, N. H., Hamada, A., Yamada, N., Rai, V., Hibino, T., & Takabe, T. (2007). Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. Journal of Experimental Botany, 58, 4203–4212. DOI: 10.1093/jxb/erm278.10.1093/jxb/erm278Suche in Google Scholar

Bhutia, S. K., Mallick, S. K., Maiti, S., & Maiti, T. K. (2008). Antitumor and proapoptotic effect of Abrus agglutinin derived peptide in Dalton’s lymphoma tumor model. Chemico-Biological Interactions, 174, 11–18. DOI: 10.1016/j.cbi.2008.04.043.10.1016/j.cbi.2008.04.043Suche in Google Scholar

Bressani, R., & Garcia-Vela, L. A. (1990). Protein fractions in amaranth grain and their chemical characterization. Journal of Agricultural and Food Chemistry, 38, 1205–1209. DOI: 10.1021/jf00095a010.10.1021/jf00095a010Suche in Google Scholar

Brill, L. M., Evans, C. J., & Hirsch, A. M. (2001). Expression of MsLEC 1- and MsLEC 2- antisense genes in alfalfa plant lines causes severe embryonic developmental and reproductive abnormalities. Plant Journal, 25, 453–461. DOI: 10.1046/j.1365-313x.2001.00979.x.10.1046/j.1365-313x.2001.00979.xSuche in Google Scholar

Caselato-Sousa, V. M., & Amaya-Farfán, J. (2012). State of knowledge on amaranth grain: A comprehensive reiew. Journal of Food Science, 77, R93–R104. DOI: 10.1111/j.1750-3841.2012.02645.x.10.1111/j.1750-3841.2012.02645.xSuche in Google Scholar

Chakaborty, S., Chakaborty, N., & Datta, A. (2000). Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proceedings of the National Academy of Sciences, 97, 3724– 3729. DOI: 10.1073/pnas.050012697.10.1073/pnas.050012697Suche in Google Scholar

Chakraborty, S., Chakraborty, N., Agrawal, L., Ghosh, S., Narula, K., Shekhar, S., Naik, P. S., Pande, P. C., Chakrborti, S. K., & Datta, A. (2010). Next-generation proteinrich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proceedings of the National Academy of Sciences, 107, 17533–17538. DOI: 10.1073/pnas.1006265107.10.1073/pnas.1006265107Suche in Google Scholar

Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectantagainst abiotic stress in plants. Trends in Plant Science, 13, 499–505. DOI: 10.1016/j.tplants.2008.06.007.10.1016/j.tplants.2008.06.007Suche in Google Scholar

Chen, T. H. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell & Environment, 34, 1–20. DOI: 10.1111/j.1365-3040.2010.02232.x.10.1111/j.1365-3040.2010.02232.xSuche in Google Scholar

Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., & Zagrodzki, P. (2012). Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT – Food Science and Technology, 46, 548–555. DOI: 10.1016/j.lwt.2011.11.009.10.1016/j.lwt.2011.11.009Suche in Google Scholar

Cho, E., Willett, W. C., Colditz, G. A., Fuchs, C. S., Wu, K., Chan, A. T., Zeisel, S. H., & Giovannucci, E. L. (2007). Dietary choline and betaine and the risk of distal colorectal adenoma in women. Journal of the National Cancer Institute, 99, 1224–1231. DOI: 10.1093/jnci/djm082.10.1093/jnci/djm082Suche in Google Scholar

Conklin, P. L., & Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environment, 27, 959–970. DOI: 10.1111/j.1365-3040.2004.01203.x.10.1111/j.1365-3040.2004.01203.xSuche in Google Scholar

Craig, S. A. S. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539–549. DOI: 10/2004;80(3):539-49.10/2004;80(3):539-49Suche in Google Scholar

Danchenko, M., Skultety, L., Rashydov, N., Berezhna, V., Matel, L., Salaj, T., Pretova, A., & Hajduch, M. (2009). Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. Journal of Proteome Research, 8, 2915–2922. DOI: 10.1021/pr900034u.10.1021/pr900034uSuche in Google Scholar

DeBolt, S., Melino, V., & Ford, C. M. (2007). Ascorbate as a biosynthetic precursor in plants. Annals of Botany, 99, 3–8. DOI: 10.1093/aob/mcl236.10.1093/aob/mcl236Suche in Google Scholar

Déjardin, A., Rochat, C., Wuilleme, S., & Boutin, J. P. (1997). Contribution of sucrose synthase, ADP-glucosepyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environment, 20, 1421–1430. DOI: 10.1046/j.1365-3040.1997.d01-32.x.10.1046/j.1365-3040.1997.d01-32.xSuche in Google Scholar

Dodok, L., Modhir, A. A., Buchtová, V., Halásová, G., & Poláček, I. (1997). Importance and utilization of amaranth in food industry. 2. Composition of amino acids and fatty acids. Nahrung, 41, 108–110. DOI:10.1002/food.19970410211.10.1002/food.19970410211Suche in Google Scholar

Doehlert, D. C. (1987). Ketose reductase activity in developing maize endosperm. Plant Physiology, 84, 830–834. DOI: 10.1104/pp.84.3.830.10.1104/pp.84.3.830Suche in Google Scholar

Donadini, R., & Copeland, L. (2000). Acetohydroxy acid reductoisomerase of wheat. Australian Journal of Plant Physiology, 27, 417–423. DOI: 10.1071/pp99181.10.1071/pp99181Suche in Google Scholar

Douady, D., & Dubacq, J. P. (1987). Purification of acyl-CoA: glycerol-3-phosphate acyltransferase from pea leaves. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 921, 615–619.Suche in Google Scholar

Durner, J., Knörzer, O. C., & Böger, P. (1993). Ketol-acid reductoisomerase from barley (Hordeum vulgare) purification, properties, and specific inhibition. Plant Physiology, 103, 903–910. DOI: 10.1104/pp.103.3.903.10.1104/pp.103.3.903Suche in Google Scholar

Džunková, M., Janovská, D., Hlásná Čepková, P., Prohasková, A., & Kolář, M. (2011). Glutelin protein fraction as a tool for clear identification of Amaranth accessions. Journal of Cereal Science, 53, 198–205. DOI: 10.1016/j.jcs.2010.12.003.10.1016/j.jcs.2010.12.003Suche in Google Scholar

Erkan, H., C¸ elik, S., Bilgi, B., & Köksel, H. (2006). A new approach for the utilization of barely in food products: Barley tarhana. Food Chemistry, 97, 12–18. DOI: 10.1016/j.foodchem.2005.03.018.10.1016/j.foodchem.2005.03.018Suche in Google Scholar

Fallahi, H., Scofield, G. N., Badger, M. R., Chow, W. S., Furbank, R. T., & Ruan, Y. L. (2008). Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. Journal of Experimental Botany, 59, 3283–3295. DOI: 10.1093/jxb/ern180.10.1093/jxb/ern180Suche in Google Scholar

Fitches, E., Wiles, D., Douglas, A. E., Hinchliffe, G., Audsley, N., & Gatehouse, J. A. (2008). The insecticidal activity of recombinant garlic lectins towards aphids. Insect Biochemistry and Molecular Biology, 38, 905–915. DOI: 10.1016/j.ibmb.2008.07.002.10.1016/j.ibmb.2008.07.002Suche in Google Scholar

Fritz, P. J., Kauffman, J. M., Robertson, C. A., & Wilson, M. R. (1986). Cocoa butter biosynthesis. Purification and characterization of a soluble sn-glycerol-3-phosphate acyltransferase from cocoa seeds. Journal of Biological Chemistry, 261, 194–199.Suche in Google Scholar

Gallardo, K., Job, M. C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J., & Job, D. (2002). Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiologia Plantarum, 116, 238–247. DOI: 10.1034/j.1399-3054.2002.1160214.x.10.1034/j.1399-3054.2002.1160214.xSuche in Google Scholar

Gamboa, A., Valenzuela, E. M., & Murillo, E. (1991). Biochemical changes due to a water loss in leaves of Amaranthus hypochiondriacus L. Journal of Plant Physiology, 137, 586–590. DOI: 10.1016/s0176-1617(11)80704-2.10.1016/s0176-1617(11)80704-2Suche in Google Scholar

Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., & Baldet, P. (2009). GDP-Dmannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant Journal, 60, 499–508. DOI: 10.1111/j.1365-313x.2009.03972.x.10.1111/j.1365-313x.2009.03972.xSuche in Google Scholar

Gorinstein, S., Pawelczik, E., Delgado-Licon, E., Haruenkit, R., Weisz, M., & Trakhtenberg, S. (2002). Charasterisation of pseudocereal and cereal proteins by protein and amino acid analyses. Journal of the Science of Food and Agriculture, 82, 886–891. DOI: 10.1002/jsfa.1120.10.1002/jsfa.1120Suche in Google Scholar

Gü¸clü-Ustünda˘g, O., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47, 231–258. DOI: 10.1080/10408390600 698197.10.1080/10408390600 698197Suche in Google Scholar

Haard, N. F., & Chism, G. W. (1996). Characteristics of edible plant tissues. In O. R. Fennema (Ed.), Food chemistry (pp. 943–1011). NewYork, NY, USA: Marcel Dekker.Suche in Google Scholar

Hajduch, M., Ganapathy, A., Stein, J. W., & Thelen, J. J. (2005). Systematic proteomic study of seed filling in soybean. Establishment of highresolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiology, 137, 1397–1419. DOI: 10.1104/pp.104.056614.10.1104/pp.104.056614Suche in Google Scholar

Hamid, R., Masood, A., Wani, I. H., & Rafiq, S. (2013). Lectins: proteins with diverse applications. Journal of Applied Pharmaceutical Science, 3, S93–S103. DOI: 10.7324/japs.2013.34.s18.10.7324/japs.2013.34.s18Suche in Google Scholar

Hannah, L. C., Futch, B., Bing, J., Shaw, J. R., Boehlein, S., Stewart, J. D., Beiriger, R., Georgelis, N., & Greene, T. (2012). A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell, 24, 2352–2363. DOI: 10.1105/tpc.112.100602.10.1105/tpc.112.100602Suche in Google Scholar

Hansen, J. E., Nielsen, C. M., Nielsen, C., Heegaard, P., Mathiesen, L. R., & Nielsen, J. O. (1989). Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS, 3, 635–641. DOI: 10.1105/tpc.112.100602.10.1105/tpc.112.100602Suche in Google Scholar

He, H. P., Cai, Y., Sun M., & Corke, H. (2002). Extraction and purification of squalene from Amaranthus grain. Journal of Agricultural Food Chemistry, 50, 368–372. DOI: 10.1021/jf010918p.10.1021/jf010918pSuche in Google Scholar

Hlinková, A., Bednárová, A., Havrlentová, M., Šupová, J., & Čičová, I. (2013). Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia, 68, 641–650. DOI: 10.2478/s11756-013-0190-6.10.2478/s11756-013-0190-6Suche in Google Scholar

Huerta-Ocampo, J. A., Briones-Cerecero, E. P., Mendoza-Hernándzez, G., DeLeón-Rodríguez, A., & Barba de la Rosa, A. P. B. (2009). Proteomic analysis of amaranth (Amaranthus hypochondriacus L.) leaves under drought stress. International Journal of Plant Science, 170, 990–998. DOI: 10.1086/605119.10.1086/605119Suche in Google Scholar

Kamal, T., Muzammil, A., Abdullateef, R. A., & Omar, M. N. (2012). Investigation of antioxidant activity and phytochemical constituents of Artocarpus altilis. Journal of Medicinal Plants Research, 64, 4354–4357. DOI: 10.5897/jmpr12.666.10.5897/jmpr12.666Suche in Google Scholar

Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., & Farmaki, T. (2008). Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of Experimental Botany, 59, 2043–2056. DOI: 10.1093/jxb/ern065.10.1093/jxb/ern065Suche in Google Scholar

Kerk, N. M., & Feldman, N. J. (1995). A biochemical model for the initiation and maintenance of the quiescent center: Implication for organisation of root meristems. Development, 121, 2825–2833.Suche in Google Scholar

Kim, T. G., Kim, J., Kim, D. H., & Yang, M. S. (2001). Expression of nutritionally well-balanced protein, AmA1, in Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 6, 173–178. DOI: 10.1007/bf02932546.10.1007/bf02932546Suche in Google Scholar

Klubicová, K., Danchenko, M., Skultety, L., Miernyk, J. A., Rashydov, N. M., Berezhna, V. V., Preťová, A., & Hajduch, M. (2010). Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environmental Science & Technology, 44, 6940–6946. DOI: 10.1021/es100895s.10.1021/es100895sSuche in Google Scholar

Kraujalis, P., & Venskutonis, P. R. (2013). Optimisation of supercritical carbon dioxide extraction of amaranth seeds by response surface methodology and characterization of extracts isolated from different plant cultivars. The Journal of Supercritical Fluids, 73, 80–86. DOI: 10.1016/j.supflu.2012.11.009.10.1016/j.supflu.2012.11.009Suche in Google Scholar

Kumar, P., Yadav, R. K., Gollen, B., Kumar, S., Verma, R. K., & Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Science and Medicine Research, LSMR–22.Suche in Google Scholar

Kuo, T. M., Doehlert, D. C., & Crawford, C. G. (1990). Sugar metabolism in germinating soybean seeds. Evidence for sorbitol pathway in soybean axes. Plant Physiology, 93, 1514– 1520. DOI: 10.1104/pp.93.4.1514.10.1104/pp.93.4.1514Suche in Google Scholar

Lam, S. K., & Ng, T. B. (2010a). Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine, 17, 457–462. DOI: 10.1016/j.phymed.2009.07.017.10.1016/j.phymed.2009.07.017Suche in Google Scholar

Lam, S. K., & Ng, T. B. (2010b). First report of a haemagglutinin-induced apoptotic pathway in breast cancer cells. Bioscience Reports, 30, 307–317. DOI: 10.1042/bsr20090059.10.1042/bsr20090059Suche in Google Scholar

Lee, Y.T., Ta, H.T., & Duggleby, R. G. (2005). Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. Plant Science, 168, 1035–1040. DOI: 10.1016/j.plantsci.2004.11.020.10.1016/j.plantsci.2004.11.020Suche in Google Scholar

Lee, S. K., Hwang, S. K., Han, M., Eom, J. S., Kang, H. G., Han, Y., Choi, S. B., Cho, M. H., Bhoo, S. H., An, G., Hahn, T. R., Okita, T. W., & Jeon, J. S. (2007). Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology, 65, 531–546. DOI: 10.1007/s11103-007-9153-z.10.1007/s11103-007-9153-zSuche in Google Scholar

Legaria, J., Rajsbaum, R., Mu´noz-Clares, R. A., Villegas-Sepúlveda, N., Simpson, J., & Iturriaga, G. (1998). Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth. Expression in leaves under short–term exposure to osmotic stress or abscisic acid. Gene, 218, 69–76. DOI: 10.1016/s0378-1119(98)00381-3.10.1016/s0378-1119(98)00381-3Suche in Google Scholar

León-Camacho, M., García-González, D. L., & Aparicio, R. (2001). A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. European Food Research and Technology, 213, 349–355. DOI: 10.1007/s002-170100340.10.1007/s002-170100340Suche in Google Scholar

Li, G. Z., Vissers, J. P. C., Silva, J. C., Golick, D., Gorenstein, M. V., & Geromanos, S. J. (2001). Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics, 9, 1696–1719. DOI: 10.1002/pmic.200800564.10.1002/pmic.200800564Suche in Google Scholar

Li, J., Baroja-Fernández, E., Bahaji, A., Munoz, F. J., Ovecka, M., Montero, M., Sesma, M. T., Alonso-Casajus, N., Almagro, G., Sánchez-López, A. M., Hidalgo, M., Zamarbide, M., & Pozueta-Romero, J. (2013). Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiology, 54, 282–294. DOI: 10.1093/pcp/pcs180.10.1093/pcp/pcs180Suche in Google Scholar

Lloyd, J. R., Springer, F., Buléon, A., Müller-Röber, B., Willmitzer, L., & Kossmann, J. (1999). The infuence of alterations in ADP-glucose pyrophosphorylaseactivities on starch structure and composition in potato tubers. Planta, 209, 230– 238.Suche in Google Scholar

Loescher, W. H. (1987). Physiology and metabolism of sugar alcohols in higher plants. Physiologia Plantarum, 70, 553– 557. DOI: 10.1111/j.1399-3054.1987.tb02857.x.10.1111/j.1399-3054.1987.tb02857.xSuche in Google Scholar

Loescher, W. H., Marlow, G. C., & Kennedy, R. A. S. (1982). Sorbitol metabolism and sink-sorce interconversions in developing apple leaves. Plant Physiology, 70, 335–339.Suche in Google Scholar

Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F., Barrera-Pacheco, A., De León-Rodríguez, A., González de Mejia, E., de Lumen, B. O., & Barba de la Rosa, A. P. B. (2010). Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides, 31, 1635–1642. DOI: 10.1016/j.peptides.2010.06.014.10.1016/j.peptides.2010.06.014Suche in Google Scholar

Maldonado-Cervantes, E., Huerta-Ocampo, J. A., Montero-Morán, G. M., Barrera-Pacheco, A., Espitia-Rangel, E., & Barba de la Rosa, A. P. (2014). Characterization of Amaranthus cruentus L. seed proteins by 2-DE and LC/MSeMS: Identification and cloning of a novel late embryogenesisabundant protein. Journal of Cereal Science, 60, 172–178. DOI: 10.1016/j.jcs.2014.02.008.10.1016/j.jcs.2014.02.008Suche in Google Scholar

Meng, Y. L., Wang, Y. M., Zhang, B., & Nii, N. (2001). Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expression unders tress conditions. Cell Research, 11, 187–193. DOI: 10.1038/sj.cr.7290085.10.1038/sj.cr.7290085Suche in Google Scholar

Miernyk, J. A., Preťová, A., Olmedilla, A., Klubicová, K., Obert, B., & Hajduch, M. (2011). Using proteomics to study sexual reproduction in angiosperms. Sexual Plant Reproduction, 24, 9–22. DOI: 10.1007/s00497-010-0149-5.10.1007/s00497-010-0149-5Suche in Google Scholar

Miettinen, T. A., & Vanhanen, H. (1994). Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. AmericanJournal of Clinical Nutrition, 59, 356–363.Suche in Google Scholar

Nimbalkar, M. S., Pai, S. R., Pawar, N. V., Ouklar, D., & Dixit, G. B. (2012). Free amino acid profiling in grain amaranth using LC-MS/MS. Food Chemistry, 134, 2565–2569. DOI: 10.1016/j.foodchem.2012.04.057.10.1016/j.foodchem.2012.04.057Suche in Google Scholar

Noctor, G. (2006). Metabolic signalling in defence and stress: the centralroles of soluble redox couples. Plant, Cell & Environment, 29, 409–425. DOI: 10.1111/j.1365-3040.2005.014 76.x.10.1111/j.1365-3040.2005.014 76.xSuche in Google Scholar

Noctor, G., Veljovic-Jovanovic, S., & Foyer, C. H. (2000). Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Proceedings of Biological Science, 355, 1465−−1475. DOI: 10.1098/rstb.2000.0707.10.1098/rstb.2000.0707Suche in Google Scholar

Nosarszewski, M., Clements, A. M., Downie, A. B., & Archbold, D. D. (2004). Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiologia Plantarum, 121, 391–398. DOI: 10.1111/j.1399-3054.2004.00344.x.10.1111/j.1399-3054.2004.00344.xSuche in Google Scholar

Ohta, K., Moriguchi, R., Kanahama, K., Yamaki, S., & Kanayama, Y. (2005). Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant. Phytochemistry, 66, 2822–2828. DOI: 10.1016/j.phytochem.2005.09.033.10.1016/j.phytochem.2005.09.033Suche in Google Scholar

Okita, T. W., Krishnan, H. B., & Kim, W. T. (1988). Immunological relationships among the major seed proteins of cereals. Plant Science, 57, 103–111. DOI: 10.1016/0167-4838(87)90042-2.10.1016/0167-4838(87)90042-2Suche in Google Scholar

Paredes-López, O. (1994). Amaranth biology, chemistry, and technology. Boca Raton, FL, USA: CRC Press.Suche in Google Scholar

Pa´sko, P., Barto´n, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115, 994–998. DOI: 10.1016/j.foodchem.2009.01.037.10.1016/j.foodchem.2009.01.037Suche in Google Scholar

Pa´sko, P., Barto´n, H., Zagrodzki, P., Chłopicka, J., I´zewska, A., Gawlik, M., Gawlik, M., & Gorinstein, S. (2011). Effect of amaranth seeds in diet on oxidative status in plasma and selected tissues of high fructose-fed rats. Food Chemistry, 126, 85–90. DOI: 10.1016/j.foodchem.2010.10.081.10.1016/j.foodchem.2010.10.081Suche in Google Scholar

Pignocchi, C., & Foyer, C. H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 6, 379–389. DOI: 10.1016/s1369-5266(03)00069-4.10.1016/s1369-5266(03)00069-4Suche in Google Scholar

Písaříková, B., Kráčmar, S., & Herzig, I. (2005). Amino acid content and biological value of protein in various amaranth species. Czech Journal of Animal Science, 50, 169–174.Suche in Google Scholar

Plattner, V. E., Wagner, M., Ratzinger, G., Gabor, F., & Wirth, M. (2008). Targeted drug delivery: binding and uptake of plant lectins using human 5637 bladder cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 70, 572–576. DOI: 10.1016/j.ejpb.2008.06.004.10.1016/j.ejpb.2008.06.004Suche in Google Scholar

Quiroga, A. V., Martínez, E. N., & Aňón, M. C. (2007). Amaranth globulin polypeptide heterogeneity. Protein Journal, 26, 327–333. DOI: 10.1007/s10930-007-9075-2.10.1007/s10930-007-9075-2Suche in Google Scholar

Raina, A., & Datta, A. (1992). Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proceedings of National Academy Sciences USA, 89, 11774–11778.Suche in Google Scholar

Rao, C. V., Newmark, H. L., & Reddy, B. S. (1998). Chemopreventive effect of squalene on colon cancer. Carcinogenesis, 19, 287–290. DOI: 10.1104/pp.116.2.859.10.1104/pp.116.2.859Suche in Google Scholar

Rascón-Cruz, Q., Sinagawa-García, S., Osuna-Castro, J. A., Bohorova, N., & Paredes-López, O. (2004). Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theoretical and Applied Genetics, 108, 335– 342. DOI: 10.1007/s00122-003-1430-x.10.1007/s00122-003-1430-xSuche in Google Scholar

Russell, B. L., Rathinasabapathi, B., & Hanson, A. D. (1998). Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiology, 116, 859–865. DOI: 10.1104/pp.116.2.859.10.1104/pp.116.2.859Suche in Google Scholar

Saunders, R. M., & Becker, R. (1984). Amaranthus: a potential food and feed resource. American Association of Cereal Chemists, 357–397.Suche in Google Scholar

Schoenlechner, R., Siebenhandl, S., & Berghofer, E. (2008). Gluten-free cereal products and beverages. London, UK: Elsevier. DOI: 10.1016/b978-012373739-7.50009-5.10.1016/b978-012373739-7.50009-5Suche in Google Scholar

Segura-Nieto, M., Barba de la Rosa, A.P., & Paredes-López, O. (1994). Amaranth biology, chemsitry and technology, Boca Raton, FL, USA: CRC Press.Suche in Google Scholar

Silva-Sánchez, C., Barba de la Rosa A. P., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & González de Mejía, E. (2008).Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of Agricultural and Food Chemistry, 56, 1233–1240. DOI: 10.1021/jf072911z.10.1021/jf072911zSuche in Google Scholar

Singhal, R. S., & Kulkarni, P. R. (1988). Amaranths – an underutilized resource. International Journal of Food Science & Technology, 23, 125–139. DOI: 10.1111/j.1365-2621.1988.tb00559.x.10.1111/j.1365-2621.1988.tb00559.xSuche in Google Scholar

Slabas, A. R., Sidebottom, C. M., Hellyer, A., Kessell, R. M. J., & Tombs, M. P. (1986). Induction, purification and characterization of NADH-specific enoyl acyl carrier protein reductase from developing seeds of oil seed rape (Brassica napus). Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 877, 271–280.Suche in Google Scholar

Smidansky, E. D., Meyer, F. D., Blakeslee, B., Weglarz, T. E., Greene, T. W., & Giroux, M. J. (2007). Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta, 225, 965–976. DOI: 10.1007/s00425-006-0400-3.10.1007/s00425-006-0400-3Suche in Google Scholar

Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences, 19, 267–290. DOI: 10.1080/07352680091139231.10.1080/07352680091139231Suche in Google Scholar

Smith, T. J. (2000). Squalene: potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9, 1841–1848. DOI: 10.1517/13543784.9.8.1841.10.1517/13543784.9.8.1841Suche in Google Scholar

Sontag-Strohm, T., Lehtinen, P., & Kaukovire-Norja, A. (2008). Gluten-free cereal products and beverages. New York, NY, USA: Elsevier. DOI: 10.1016/b978-012373739-7.50021-6.10.1016/b978-012373739-7.50021-6Suche in Google Scholar

Stallknecht, G. E., & Schulz-Schaeffer, J. R. (1993). Amaranth rediscovered. In J. Janick, & J. E. Simon (Eds.), New crops (pp. 211–221). New York, NY, USA: John Wiley & Sons.Suche in Google Scholar

Stark, D. M., Timmerman, K. P., Barry, G. F., Preiss, J., & Kishore, G. M. (1992). Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 258, 287–292. DOI: 10.1126/science.258.5080.287.10.1126/science.258.5080.287Suche in Google Scholar

Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., & Obendorf, R. L. (2001). Buckwheat seed milling fraction: decsription, macronutrient, composition and dietary fibre. Journal of Cereal Science, 33, 271–278. DOI: 10.1006/jcrs.2001.0366.10.1006/jcrs.2001.0366Suche in Google Scholar

Tamás, C., Kisgyörgy, B. N., Rakszegi, M., Wilkinson, M. D., Yang, M. S., Láng, L., Tamás, L., & Bedö, Z. (2009). Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Reports, 28, 1085–1094. DOI: 10.1007/s00299-009-0716-0.10.1007/s00299-009-0716-0Suche in Google Scholar

Teutonico, R. A., & Knorr, D. (1985). Amaranth: Composition, properties, and applications of rediscovered food crop. Food Technology, 39, 49–61.Suche in Google Scholar

Tikekar, R. V., Ludescher, R. D., & Karwe, M. V. (2008). Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. Journal of Agricultural and Food Chemistry, 56, 10675–10678. DOI: 10.1021/jf801729m.10.1021/jf801729mSuche in Google Scholar

Togun, R. A., Animashaun, T., Kay, J. E., & Aboderin, A. (1994a). A Galactose-binding mitogenic lectin from the seeds of Telfairia occidentalis. Phytochemistry, 35, 1125–1130. DOI: 10.1016/s0031-9422(00)94808-8.10.1016/s0031-9422(00)94808-8Suche in Google Scholar

Togun, R. A., Binutu, O. O., Animashaun, T., & Aboderin, A. (1994b). β-Galactoside lectins from the seeds of Tetracarpidium conophorum. Nigerian Journal of Biochemistry, 9, 17–25.Suche in Google Scholar

Togun, R. A., Otusanya, O., & Aboderin, A. (2004). On the possible function of Telfairia occidentalis agglutinin in the plant. Journal of Biochemistry and Molecular Biology, 37, 715–719. DOI: 10.5483/bmbrep.2004.37.6.715.10.5483/bmbrep.2004.37.6.715Suche in Google Scholar

Tuncel, A., & Okita, T. W. (2013). Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Science, 211, 52–60. DOI: 10.1016/j.plantsci.2013.06.009.10.1016/j.plantsci.2013.06.009Suche in Google Scholar

Ueland, P. M. (2011). Choline and betaine in health and disease. Journal of Inherited Metabolic Disease, 34, 3–15. DOI: 10.1007/s10545-010-9088-4.10.1007/s10545-010-9088-4Suche in Google Scholar

Valenzuela-Soto, E. M., & Muňoz-Clares, R. A. (1994). Purification and properties of betaine aldehyde dehydrogenase tracted from detached leaves of Amaranthus hypochondriacus L. Journal of Plant Physiology, 143, 145–152. DOI: 10.1016/s0176-1617(11)81678-0.10.1016/s0176-1617(11)81678-0Suche in Google Scholar

Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12, 381–412. DOI: 10.1111/1541-4337.12021.10.1111/1541-4337.12021Suche in Google Scholar

Vojtíšková, P., Kmentová, K., Kubáň, V., & Kráčmar, S. (2012). Chemical composition of buckwheat plant (Fagopyrum esculentum) and secelcted buckwheat products. Potravinárstvo, 1, 1011–1019. DOI: 10.5219/385.10.5219/385Suche in Google Scholar

Wanek, W., & Richter, A. (1993). Iditol:NAD-oxidoreductase in Viscum album: utilization of host-derived sorbitol. Plant Physiology and Biochemistry, 31, 205–211.Suche in Google Scholar

Wang, Y., Meng, Y. L., Ishikawa, H., Hibino, T., Tanaka, Y., Nii, N., & Takabe, T. (1999). Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant Cell Physiology, 40, 668–674. DOI: 10.1093/oxfordjournals. pcp.a029591.10.1093/oxfordjournals. pcp.a029591Suche in Google Scholar

Weretilnyk, E. A., Bednarek, S., McCue, K. F., Rhodes, D., & Hanson, A. D. (1989). Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 178, 342–352. DOI: 10.1007/bf00391862.10.1007/bf00391862Suche in Google Scholar

Wolucka, B. A., & van Montagu, M. (2003). GDP-mannose 3,5-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry, 278, 47483–47490.DOI: 10.1074/jbc.M309135200.10.1074/jbc.M309135200Suche in Google Scholar

Wu, B. H., & Li, S. H. (2010). Sorbitol dehydrogenase gene expression and enzyme activity in apple: Tissue specificity during bud development and response to rootstock vigor and growth manipulation. Journal of the American Society for Horticultural Science, 135, 379–387.Suche in Google Scholar

Yamaguchi, H., Kanayama, Y., & Yamaki, S. (1994). Purification and properties of NAD-dependent sorbitol dehydrogenase from apple fruit. Plant Cell Physiology, 35,887–892.Suche in Google Scholar

Zheleznov, A. V., Solonenko, L. P., & Zheleznova, N. B. (1997). Seed proteins of the wild and the cultivated Amaranthusspecies. Euphytica, 97, 177–182. DOI: 10.1023/a:100307 3804203.10.1023/a:100307 3804203Suche in Google Scholar

Received: 2015-10-13
Revised: 2016-1-10
Accepted: 2016-1-11
Published Online: 2016-5-24
Published in Print: 2016-10-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0065/html?lang=de
Button zum nach oben scrollen