Abstract
Amaranth, a staple food source in ancient Aztec, Maya and Inca cultures, has been recognized as a 21st century crop. This superfood, known as Inca wheat, attracts the worldwide attention of researchers and farmers for its superior agronomical and technological properties but especially because of its exceptional nutritive value. A combination of two-dimensional electrophoresis (2-DE) with MS facilitating the effective differentiation of 13 classes of Amaranthus cruentus L. “Ficha” mature seed proteins was used in the current study. The best resolution results in the 2-DE were obtained using immobilised pH gradients strips with a pH range of 5–8. Out of the 461 spots detected, 249 were successfully identified by LC-MS/MS analysis, making this the most inclusive protein profile of mature amaranth seed. Unknown proteins represented the most abundant class of proteins (59), the second most abundant category was related to energy (46) and then to seed storage proteins (43). These results expand the knowledge of the amaranth seed proteome and it is expected that the data presented here will contribute to further in-depth characterisation of Amaranthus seeds.
Acknowledgements
This work was co-funded by the VEGA grant agency project no. 2/0066/13: Exploitation of modern biotechnologies in amaranth breeding programme, VEGA project no. 2/0041/16: Molecular methods in breeding of naturally gluten-free amaranth and European Community project no. 26220220180: Building Research Centre “AgroBioTech”.
Supplementary data
Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0065).
References
Adeyemi, A., Togun, R. A., Ogunbiyi, O. A., & Aboderin, A. (1994). Observations on the haemagglutinins from the seeds of Dioclea reflexa (Hook). Nigerian Journal of Biochemistry, 9, 26–36.Search in Google Scholar
Ajomale, K., Binutu, O. O., Togun, R. A., & Aboderin, A. (1997). A galactose-binding lectin from the seeds of Caesalpinia bonduc (Linn.) Roxb. (Caesalpiniaceae). Nigerian Journal of Biochemistry and Molecular Biology, 13, 23–28.Search in Google Scholar
Alais, C., & Linden, G. (1991). Food biochemistry. New York, NY, USA: Ellis Horwood.Search in Google Scholar
Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in-vitro antioxidant activity of amaranth, quinoa and buckwheat as affected by sprouting andbread baking. Food Chemistry, 119, 770–778. DOI: 10.1016/j.foodchem.2009.07.032.10.1016/j.foodchem.2009.07.032Search in Google Scholar
Barba de la Rosa, A. P., Paredez-Lopez, O., & Gueguen, J. (1992). Characterization of amaranth globulins by ultracentrifugation and chromatographic techniques. Journal of Agricultural Food Chemistry, 40, 937–940. DOI: 10.1021/jf00018a003.10.1021/jf00018a003Search in Google Scholar
Barth, C., DeTullio, M., & Conklin, P. L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 57, 1657–1665. DOI: 10.1093/jxb/erj198.10.1093/jxb/erj198Search in Google Scholar
Baud, S., Vaultier, M. N., & Rochat, C. (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany, 55, 397–409. DOI: 10.1093/jxb/erh047.10.1093/jxb/erh047Search in Google Scholar
Berganza, B. E., Moran, A. W., Rodríguez, G. M., Coto, N. M., Santamaría, M., & Bressani, R. (2003). Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods for Human Nutrition, 58, 1–6. DOI: 10.1023/b:qual.0000041143.24454.0a.10.1023/b:qual.0000041143.24454.0aSearch in Google Scholar
Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., van Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T. M., Terryn, N., Gielen, J., Villarroel, R., De Clerck, R., Van Montagu, M., Lecharny, A., Auborg, S., Gy, I., Kreis, M., Lao, N., Kavanagh, T., Hempel, S., Kotter, P., Entian, K. D., Rieger, M., Schaeffer, M., Funk, B., Mueller-Auer, S., Silvey, M., James, R., Montfort, A., Pons, A., Puigdomenech, P., Douka, A., Voukelatou, E., Milioni, D., Hatzopoulos, P., Piravandi, E., Obermaier, B., Hilbert, H., Düsterhöft, A., Moores, T., Jones, J. D. G., Eneva, T., Palme, K., Benes, V., Rechman, S., Ansorge, W., Cooke, R., Berger, C., Delseny, M., Voet, M., Volckaert, G., Mewes, H.W., Klosterman, S., Schueller, C., & Chalwatzis, N. (1998). Analysis of 19 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488. DOI: 10.1038/35140.10.1038/35140Search in Google Scholar
Bhuiyan, N. H., Hamada, A., Yamada, N., Rai, V., Hibino, T., & Takabe, T. (2007). Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. Journal of Experimental Botany, 58, 4203–4212. DOI: 10.1093/jxb/erm278.10.1093/jxb/erm278Search in Google Scholar
Bhutia, S. K., Mallick, S. K., Maiti, S., & Maiti, T. K. (2008). Antitumor and proapoptotic effect of Abrus agglutinin derived peptide in Dalton’s lymphoma tumor model. Chemico-Biological Interactions, 174, 11–18. DOI: 10.1016/j.cbi.2008.04.043.10.1016/j.cbi.2008.04.043Search in Google Scholar
Bressani, R., & Garcia-Vela, L. A. (1990). Protein fractions in amaranth grain and their chemical characterization. Journal of Agricultural and Food Chemistry, 38, 1205–1209. DOI: 10.1021/jf00095a010.10.1021/jf00095a010Search in Google Scholar
Brill, L. M., Evans, C. J., & Hirsch, A. M. (2001). Expression of MsLEC 1- and MsLEC 2- antisense genes in alfalfa plant lines causes severe embryonic developmental and reproductive abnormalities. Plant Journal, 25, 453–461. DOI: 10.1046/j.1365-313x.2001.00979.x.10.1046/j.1365-313x.2001.00979.xSearch in Google Scholar
Caselato-Sousa, V. M., & Amaya-Farfán, J. (2012). State of knowledge on amaranth grain: A comprehensive reiew. Journal of Food Science, 77, R93–R104. DOI: 10.1111/j.1750-3841.2012.02645.x.10.1111/j.1750-3841.2012.02645.xSearch in Google Scholar
Chakaborty, S., Chakaborty, N., & Datta, A. (2000). Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proceedings of the National Academy of Sciences, 97, 3724– 3729. DOI: 10.1073/pnas.050012697.10.1073/pnas.050012697Search in Google Scholar
Chakraborty, S., Chakraborty, N., Agrawal, L., Ghosh, S., Narula, K., Shekhar, S., Naik, P. S., Pande, P. C., Chakrborti, S. K., & Datta, A. (2010). Next-generation proteinrich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proceedings of the National Academy of Sciences, 107, 17533–17538. DOI: 10.1073/pnas.1006265107.10.1073/pnas.1006265107Search in Google Scholar
Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectantagainst abiotic stress in plants. Trends in Plant Science, 13, 499–505. DOI: 10.1016/j.tplants.2008.06.007.10.1016/j.tplants.2008.06.007Search in Google Scholar
Chen, T. H. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell & Environment, 34, 1–20. DOI: 10.1111/j.1365-3040.2010.02232.x.10.1111/j.1365-3040.2010.02232.xSearch in Google Scholar
Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., & Zagrodzki, P. (2012). Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT – Food Science and Technology, 46, 548–555. DOI: 10.1016/j.lwt.2011.11.009.10.1016/j.lwt.2011.11.009Search in Google Scholar
Cho, E., Willett, W. C., Colditz, G. A., Fuchs, C. S., Wu, K., Chan, A. T., Zeisel, S. H., & Giovannucci, E. L. (2007). Dietary choline and betaine and the risk of distal colorectal adenoma in women. Journal of the National Cancer Institute, 99, 1224–1231. DOI: 10.1093/jnci/djm082.10.1093/jnci/djm082Search in Google Scholar
Conklin, P. L., & Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environment, 27, 959–970. DOI: 10.1111/j.1365-3040.2004.01203.x.10.1111/j.1365-3040.2004.01203.xSearch in Google Scholar
Craig, S. A. S. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539–549. DOI: 10/2004;80(3):539-49.10/2004;80(3):539-49Search in Google Scholar
Danchenko, M., Skultety, L., Rashydov, N., Berezhna, V., Matel, L., Salaj, T., Pretova, A., & Hajduch, M. (2009). Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. Journal of Proteome Research, 8, 2915–2922. DOI: 10.1021/pr900034u.10.1021/pr900034uSearch in Google Scholar
DeBolt, S., Melino, V., & Ford, C. M. (2007). Ascorbate as a biosynthetic precursor in plants. Annals of Botany, 99, 3–8. DOI: 10.1093/aob/mcl236.10.1093/aob/mcl236Search in Google Scholar
Déjardin, A., Rochat, C., Wuilleme, S., & Boutin, J. P. (1997). Contribution of sucrose synthase, ADP-glucosepyrophosphorylase and starch synthase to starch synthesis in developing pea seeds. Plant Cell Environment, 20, 1421–1430. DOI: 10.1046/j.1365-3040.1997.d01-32.x.10.1046/j.1365-3040.1997.d01-32.xSearch in Google Scholar
Dodok, L., Modhir, A. A., Buchtová, V., Halásová, G., & Poláček, I. (1997). Importance and utilization of amaranth in food industry. 2. Composition of amino acids and fatty acids. Nahrung, 41, 108–110. DOI:10.1002/food.19970410211.10.1002/food.19970410211Search in Google Scholar
Doehlert, D. C. (1987). Ketose reductase activity in developing maize endosperm. Plant Physiology, 84, 830–834. DOI: 10.1104/pp.84.3.830.10.1104/pp.84.3.830Search in Google Scholar
Donadini, R., & Copeland, L. (2000). Acetohydroxy acid reductoisomerase of wheat. Australian Journal of Plant Physiology, 27, 417–423. DOI: 10.1071/pp99181.10.1071/pp99181Search in Google Scholar
Douady, D., & Dubacq, J. P. (1987). Purification of acyl-CoA: glycerol-3-phosphate acyltransferase from pea leaves. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 921, 615–619.Search in Google Scholar
Durner, J., Knörzer, O. C., & Böger, P. (1993). Ketol-acid reductoisomerase from barley (Hordeum vulgare) purification, properties, and specific inhibition. Plant Physiology, 103, 903–910. DOI: 10.1104/pp.103.3.903.10.1104/pp.103.3.903Search in Google Scholar
Džunková, M., Janovská, D., Hlásná Čepková, P., Prohasková, A., & Kolář, M. (2011). Glutelin protein fraction as a tool for clear identification of Amaranth accessions. Journal of Cereal Science, 53, 198–205. DOI: 10.1016/j.jcs.2010.12.003.10.1016/j.jcs.2010.12.003Search in Google Scholar
Erkan, H., C¸ elik, S., Bilgi, B., & Köksel, H. (2006). A new approach for the utilization of barely in food products: Barley tarhana. Food Chemistry, 97, 12–18. DOI: 10.1016/j.foodchem.2005.03.018.10.1016/j.foodchem.2005.03.018Search in Google Scholar
Fallahi, H., Scofield, G. N., Badger, M. R., Chow, W. S., Furbank, R. T., & Ruan, Y. L. (2008). Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. Journal of Experimental Botany, 59, 3283–3295. DOI: 10.1093/jxb/ern180.10.1093/jxb/ern180Search in Google Scholar
Fitches, E., Wiles, D., Douglas, A. E., Hinchliffe, G., Audsley, N., & Gatehouse, J. A. (2008). The insecticidal activity of recombinant garlic lectins towards aphids. Insect Biochemistry and Molecular Biology, 38, 905–915. DOI: 10.1016/j.ibmb.2008.07.002.10.1016/j.ibmb.2008.07.002Search in Google Scholar
Fritz, P. J., Kauffman, J. M., Robertson, C. A., & Wilson, M. R. (1986). Cocoa butter biosynthesis. Purification and characterization of a soluble sn-glycerol-3-phosphate acyltransferase from cocoa seeds. Journal of Biological Chemistry, 261, 194–199.Search in Google Scholar
Gallardo, K., Job, M. C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J., & Job, D. (2002). Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiologia Plantarum, 116, 238–247. DOI: 10.1034/j.1399-3054.2002.1160214.x.10.1034/j.1399-3054.2002.1160214.xSearch in Google Scholar
Gamboa, A., Valenzuela, E. M., & Murillo, E. (1991). Biochemical changes due to a water loss in leaves of Amaranthus hypochiondriacus L. Journal of Plant Physiology, 137, 586–590. DOI: 10.1016/s0176-1617(11)80704-2.10.1016/s0176-1617(11)80704-2Search in Google Scholar
Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., & Baldet, P. (2009). GDP-Dmannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant Journal, 60, 499–508. DOI: 10.1111/j.1365-313x.2009.03972.x.10.1111/j.1365-313x.2009.03972.xSearch in Google Scholar
Gorinstein, S., Pawelczik, E., Delgado-Licon, E., Haruenkit, R., Weisz, M., & Trakhtenberg, S. (2002). Charasterisation of pseudocereal and cereal proteins by protein and amino acid analyses. Journal of the Science of Food and Agriculture, 82, 886–891. DOI: 10.1002/jsfa.1120.10.1002/jsfa.1120Search in Google Scholar
Gü¸clü-Ustünda˘g, O., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47, 231–258. DOI: 10.1080/10408390600 698197.10.1080/10408390600 698197Search in Google Scholar
Haard, N. F., & Chism, G. W. (1996). Characteristics of edible plant tissues. In O. R. Fennema (Ed.), Food chemistry (pp. 943–1011). NewYork, NY, USA: Marcel Dekker.Search in Google Scholar
Hajduch, M., Ganapathy, A., Stein, J. W., & Thelen, J. J. (2005). Systematic proteomic study of seed filling in soybean. Establishment of highresolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiology, 137, 1397–1419. DOI: 10.1104/pp.104.056614.10.1104/pp.104.056614Search in Google Scholar
Hamid, R., Masood, A., Wani, I. H., & Rafiq, S. (2013). Lectins: proteins with diverse applications. Journal of Applied Pharmaceutical Science, 3, S93–S103. DOI: 10.7324/japs.2013.34.s18.10.7324/japs.2013.34.s18Search in Google Scholar
Hannah, L. C., Futch, B., Bing, J., Shaw, J. R., Boehlein, S., Stewart, J. D., Beiriger, R., Georgelis, N., & Greene, T. (2012). A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell, 24, 2352–2363. DOI: 10.1105/tpc.112.100602.10.1105/tpc.112.100602Search in Google Scholar
Hansen, J. E., Nielsen, C. M., Nielsen, C., Heegaard, P., Mathiesen, L. R., & Nielsen, J. O. (1989). Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS, 3, 635–641. DOI: 10.1105/tpc.112.100602.10.1105/tpc.112.100602Search in Google Scholar
He, H. P., Cai, Y., Sun M., & Corke, H. (2002). Extraction and purification of squalene from Amaranthus grain. Journal of Agricultural Food Chemistry, 50, 368–372. DOI: 10.1021/jf010918p.10.1021/jf010918pSearch in Google Scholar
Hlinková, A., Bednárová, A., Havrlentová, M., Šupová, J., & Čičová, I. (2013). Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia, 68, 641–650. DOI: 10.2478/s11756-013-0190-6.10.2478/s11756-013-0190-6Search in Google Scholar
Huerta-Ocampo, J. A., Briones-Cerecero, E. P., Mendoza-Hernándzez, G., DeLeón-Rodríguez, A., & Barba de la Rosa, A. P. B. (2009). Proteomic analysis of amaranth (Amaranthus hypochondriacus L.) leaves under drought stress. International Journal of Plant Science, 170, 990–998. DOI: 10.1086/605119.10.1086/605119Search in Google Scholar
Kamal, T., Muzammil, A., Abdullateef, R. A., & Omar, M. N. (2012). Investigation of antioxidant activity and phytochemical constituents of Artocarpus altilis. Journal of Medicinal Plants Research, 64, 4354–4357. DOI: 10.5897/jmpr12.666.10.5897/jmpr12.666Search in Google Scholar
Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., & Farmaki, T. (2008). Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of Experimental Botany, 59, 2043–2056. DOI: 10.1093/jxb/ern065.10.1093/jxb/ern065Search in Google Scholar
Kerk, N. M., & Feldman, N. J. (1995). A biochemical model for the initiation and maintenance of the quiescent center: Implication for organisation of root meristems. Development, 121, 2825–2833.Search in Google Scholar
Kim, T. G., Kim, J., Kim, D. H., & Yang, M. S. (2001). Expression of nutritionally well-balanced protein, AmA1, in Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 6, 173–178. DOI: 10.1007/bf02932546.10.1007/bf02932546Search in Google Scholar
Klubicová, K., Danchenko, M., Skultety, L., Miernyk, J. A., Rashydov, N. M., Berezhna, V. V., Preťová, A., & Hajduch, M. (2010). Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environmental Science & Technology, 44, 6940–6946. DOI: 10.1021/es100895s.10.1021/es100895sSearch in Google Scholar
Kraujalis, P., & Venskutonis, P. R. (2013). Optimisation of supercritical carbon dioxide extraction of amaranth seeds by response surface methodology and characterization of extracts isolated from different plant cultivars. The Journal of Supercritical Fluids, 73, 80–86. DOI: 10.1016/j.supflu.2012.11.009.10.1016/j.supflu.2012.11.009Search in Google Scholar
Kumar, P., Yadav, R. K., Gollen, B., Kumar, S., Verma, R. K., & Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Science and Medicine Research, LSMR–22.Search in Google Scholar
Kuo, T. M., Doehlert, D. C., & Crawford, C. G. (1990). Sugar metabolism in germinating soybean seeds. Evidence for sorbitol pathway in soybean axes. Plant Physiology, 93, 1514– 1520. DOI: 10.1104/pp.93.4.1514.10.1104/pp.93.4.1514Search in Google Scholar
Lam, S. K., & Ng, T. B. (2010a). Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine, 17, 457–462. DOI: 10.1016/j.phymed.2009.07.017.10.1016/j.phymed.2009.07.017Search in Google Scholar
Lam, S. K., & Ng, T. B. (2010b). First report of a haemagglutinin-induced apoptotic pathway in breast cancer cells. Bioscience Reports, 30, 307–317. DOI: 10.1042/bsr20090059.10.1042/bsr20090059Search in Google Scholar
Lee, Y.T., Ta, H.T., & Duggleby, R. G. (2005). Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. Plant Science, 168, 1035–1040. DOI: 10.1016/j.plantsci.2004.11.020.10.1016/j.plantsci.2004.11.020Search in Google Scholar
Lee, S. K., Hwang, S. K., Han, M., Eom, J. S., Kang, H. G., Han, Y., Choi, S. B., Cho, M. H., Bhoo, S. H., An, G., Hahn, T. R., Okita, T. W., & Jeon, J. S. (2007). Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology, 65, 531–546. DOI: 10.1007/s11103-007-9153-z.10.1007/s11103-007-9153-zSearch in Google Scholar
Legaria, J., Rajsbaum, R., Mu´noz-Clares, R. A., Villegas-Sepúlveda, N., Simpson, J., & Iturriaga, G. (1998). Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth. Expression in leaves under short–term exposure to osmotic stress or abscisic acid. Gene, 218, 69–76. DOI: 10.1016/s0378-1119(98)00381-3.10.1016/s0378-1119(98)00381-3Search in Google Scholar
León-Camacho, M., García-González, D. L., & Aparicio, R. (2001). A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. European Food Research and Technology, 213, 349–355. DOI: 10.1007/s002-170100340.10.1007/s002-170100340Search in Google Scholar
Li, G. Z., Vissers, J. P. C., Silva, J. C., Golick, D., Gorenstein, M. V., & Geromanos, S. J. (2001). Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics, 9, 1696–1719. DOI: 10.1002/pmic.200800564.10.1002/pmic.200800564Search in Google Scholar
Li, J., Baroja-Fernández, E., Bahaji, A., Munoz, F. J., Ovecka, M., Montero, M., Sesma, M. T., Alonso-Casajus, N., Almagro, G., Sánchez-López, A. M., Hidalgo, M., Zamarbide, M., & Pozueta-Romero, J. (2013). Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiology, 54, 282–294. DOI: 10.1093/pcp/pcs180.10.1093/pcp/pcs180Search in Google Scholar
Lloyd, J. R., Springer, F., Buléon, A., Müller-Röber, B., Willmitzer, L., & Kossmann, J. (1999). The infuence of alterations in ADP-glucose pyrophosphorylaseactivities on starch structure and composition in potato tubers. Planta, 209, 230– 238.Search in Google Scholar
Loescher, W. H. (1987). Physiology and metabolism of sugar alcohols in higher plants. Physiologia Plantarum, 70, 553– 557. DOI: 10.1111/j.1399-3054.1987.tb02857.x.10.1111/j.1399-3054.1987.tb02857.xSearch in Google Scholar
Loescher, W. H., Marlow, G. C., & Kennedy, R. A. S. (1982). Sorbitol metabolism and sink-sorce interconversions in developing apple leaves. Plant Physiology, 70, 335–339.Search in Google Scholar
Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F., Barrera-Pacheco, A., De León-Rodríguez, A., González de Mejia, E., de Lumen, B. O., & Barba de la Rosa, A. P. B. (2010). Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides, 31, 1635–1642. DOI: 10.1016/j.peptides.2010.06.014.10.1016/j.peptides.2010.06.014Search in Google Scholar
Maldonado-Cervantes, E., Huerta-Ocampo, J. A., Montero-Morán, G. M., Barrera-Pacheco, A., Espitia-Rangel, E., & Barba de la Rosa, A. P. (2014). Characterization of Amaranthus cruentus L. seed proteins by 2-DE and LC/MSeMS: Identification and cloning of a novel late embryogenesisabundant protein. Journal of Cereal Science, 60, 172–178. DOI: 10.1016/j.jcs.2014.02.008.10.1016/j.jcs.2014.02.008Search in Google Scholar
Meng, Y. L., Wang, Y. M., Zhang, B., & Nii, N. (2001). Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expression unders tress conditions. Cell Research, 11, 187–193. DOI: 10.1038/sj.cr.7290085.10.1038/sj.cr.7290085Search in Google Scholar
Miernyk, J. A., Preťová, A., Olmedilla, A., Klubicová, K., Obert, B., & Hajduch, M. (2011). Using proteomics to study sexual reproduction in angiosperms. Sexual Plant Reproduction, 24, 9–22. DOI: 10.1007/s00497-010-0149-5.10.1007/s00497-010-0149-5Search in Google Scholar
Miettinen, T. A., & Vanhanen, H. (1994). Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. AmericanJournal of Clinical Nutrition, 59, 356–363.Search in Google Scholar
Nimbalkar, M. S., Pai, S. R., Pawar, N. V., Ouklar, D., & Dixit, G. B. (2012). Free amino acid profiling in grain amaranth using LC-MS/MS. Food Chemistry, 134, 2565–2569. DOI: 10.1016/j.foodchem.2012.04.057.10.1016/j.foodchem.2012.04.057Search in Google Scholar
Noctor, G. (2006). Metabolic signalling in defence and stress: the centralroles of soluble redox couples. Plant, Cell & Environment, 29, 409–425. DOI: 10.1111/j.1365-3040.2005.014 76.x.10.1111/j.1365-3040.2005.014 76.xSearch in Google Scholar
Noctor, G., Veljovic-Jovanovic, S., & Foyer, C. H. (2000). Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Proceedings of Biological Science, 355, 1465−−1475. DOI: 10.1098/rstb.2000.0707.10.1098/rstb.2000.0707Search in Google Scholar
Nosarszewski, M., Clements, A. M., Downie, A. B., & Archbold, D. D. (2004). Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiologia Plantarum, 121, 391–398. DOI: 10.1111/j.1399-3054.2004.00344.x.10.1111/j.1399-3054.2004.00344.xSearch in Google Scholar
Ohta, K., Moriguchi, R., Kanahama, K., Yamaki, S., & Kanayama, Y. (2005). Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant. Phytochemistry, 66, 2822–2828. DOI: 10.1016/j.phytochem.2005.09.033.10.1016/j.phytochem.2005.09.033Search in Google Scholar
Okita, T. W., Krishnan, H. B., & Kim, W. T. (1988). Immunological relationships among the major seed proteins of cereals. Plant Science, 57, 103–111. DOI: 10.1016/0167-4838(87)90042-2.10.1016/0167-4838(87)90042-2Search in Google Scholar
Paredes-López, O. (1994). Amaranth biology, chemistry, and technology. Boca Raton, FL, USA: CRC Press.Search in Google Scholar
Pa´sko, P., Barto´n, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115, 994–998. DOI: 10.1016/j.foodchem.2009.01.037.10.1016/j.foodchem.2009.01.037Search in Google Scholar
Pa´sko, P., Barto´n, H., Zagrodzki, P., Chłopicka, J., I´zewska, A., Gawlik, M., Gawlik, M., & Gorinstein, S. (2011). Effect of amaranth seeds in diet on oxidative status in plasma and selected tissues of high fructose-fed rats. Food Chemistry, 126, 85–90. DOI: 10.1016/j.foodchem.2010.10.081.10.1016/j.foodchem.2010.10.081Search in Google Scholar
Pignocchi, C., & Foyer, C. H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 6, 379–389. DOI: 10.1016/s1369-5266(03)00069-4.10.1016/s1369-5266(03)00069-4Search in Google Scholar
Písaříková, B., Kráčmar, S., & Herzig, I. (2005). Amino acid content and biological value of protein in various amaranth species. Czech Journal of Animal Science, 50, 169–174.Search in Google Scholar
Plattner, V. E., Wagner, M., Ratzinger, G., Gabor, F., & Wirth, M. (2008). Targeted drug delivery: binding and uptake of plant lectins using human 5637 bladder cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 70, 572–576. DOI: 10.1016/j.ejpb.2008.06.004.10.1016/j.ejpb.2008.06.004Search in Google Scholar
Quiroga, A. V., Martínez, E. N., & Aňón, M. C. (2007). Amaranth globulin polypeptide heterogeneity. Protein Journal, 26, 327–333. DOI: 10.1007/s10930-007-9075-2.10.1007/s10930-007-9075-2Search in Google Scholar
Raina, A., & Datta, A. (1992). Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proceedings of National Academy Sciences USA, 89, 11774–11778.Search in Google Scholar
Rao, C. V., Newmark, H. L., & Reddy, B. S. (1998). Chemopreventive effect of squalene on colon cancer. Carcinogenesis, 19, 287–290. DOI: 10.1104/pp.116.2.859.10.1104/pp.116.2.859Search in Google Scholar
Rascón-Cruz, Q., Sinagawa-García, S., Osuna-Castro, J. A., Bohorova, N., & Paredes-López, O. (2004). Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theoretical and Applied Genetics, 108, 335– 342. DOI: 10.1007/s00122-003-1430-x.10.1007/s00122-003-1430-xSearch in Google Scholar
Russell, B. L., Rathinasabapathi, B., & Hanson, A. D. (1998). Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiology, 116, 859–865. DOI: 10.1104/pp.116.2.859.10.1104/pp.116.2.859Search in Google Scholar
Saunders, R. M., & Becker, R. (1984). Amaranthus: a potential food and feed resource. American Association of Cereal Chemists, 357–397.Search in Google Scholar
Schoenlechner, R., Siebenhandl, S., & Berghofer, E. (2008). Gluten-free cereal products and beverages. London, UK: Elsevier. DOI: 10.1016/b978-012373739-7.50009-5.10.1016/b978-012373739-7.50009-5Search in Google Scholar
Segura-Nieto, M., Barba de la Rosa, A.P., & Paredes-López, O. (1994). Amaranth biology, chemsitry and technology, Boca Raton, FL, USA: CRC Press.Search in Google Scholar
Silva-Sánchez, C., Barba de la Rosa A. P., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & González de Mejía, E. (2008).Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of Agricultural and Food Chemistry, 56, 1233–1240. DOI: 10.1021/jf072911z.10.1021/jf072911zSearch in Google Scholar
Singhal, R. S., & Kulkarni, P. R. (1988). Amaranths – an underutilized resource. International Journal of Food Science & Technology, 23, 125–139. DOI: 10.1111/j.1365-2621.1988.tb00559.x.10.1111/j.1365-2621.1988.tb00559.xSearch in Google Scholar
Slabas, A. R., Sidebottom, C. M., Hellyer, A., Kessell, R. M. J., & Tombs, M. P. (1986). Induction, purification and characterization of NADH-specific enoyl acyl carrier protein reductase from developing seeds of oil seed rape (Brassica napus). Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 877, 271–280.Search in Google Scholar
Smidansky, E. D., Meyer, F. D., Blakeslee, B., Weglarz, T. E., Greene, T. W., & Giroux, M. J. (2007). Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta, 225, 965–976. DOI: 10.1007/s00425-006-0400-3.10.1007/s00425-006-0400-3Search in Google Scholar
Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences, 19, 267–290. DOI: 10.1080/07352680091139231.10.1080/07352680091139231Search in Google Scholar
Smith, T. J. (2000). Squalene: potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9, 1841–1848. DOI: 10.1517/13543784.9.8.1841.10.1517/13543784.9.8.1841Search in Google Scholar
Sontag-Strohm, T., Lehtinen, P., & Kaukovire-Norja, A. (2008). Gluten-free cereal products and beverages. New York, NY, USA: Elsevier. DOI: 10.1016/b978-012373739-7.50021-6.10.1016/b978-012373739-7.50021-6Search in Google Scholar
Stallknecht, G. E., & Schulz-Schaeffer, J. R. (1993). Amaranth rediscovered. In J. Janick, & J. E. Simon (Eds.), New crops (pp. 211–221). New York, NY, USA: John Wiley & Sons.Search in Google Scholar
Stark, D. M., Timmerman, K. P., Barry, G. F., Preiss, J., & Kishore, G. M. (1992). Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 258, 287–292. DOI: 10.1126/science.258.5080.287.10.1126/science.258.5080.287Search in Google Scholar
Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., & Obendorf, R. L. (2001). Buckwheat seed milling fraction: decsription, macronutrient, composition and dietary fibre. Journal of Cereal Science, 33, 271–278. DOI: 10.1006/jcrs.2001.0366.10.1006/jcrs.2001.0366Search in Google Scholar
Tamás, C., Kisgyörgy, B. N., Rakszegi, M., Wilkinson, M. D., Yang, M. S., Láng, L., Tamás, L., & Bedö, Z. (2009). Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Reports, 28, 1085–1094. DOI: 10.1007/s00299-009-0716-0.10.1007/s00299-009-0716-0Search in Google Scholar
Teutonico, R. A., & Knorr, D. (1985). Amaranth: Composition, properties, and applications of rediscovered food crop. Food Technology, 39, 49–61.Search in Google Scholar
Tikekar, R. V., Ludescher, R. D., & Karwe, M. V. (2008). Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. Journal of Agricultural and Food Chemistry, 56, 10675–10678. DOI: 10.1021/jf801729m.10.1021/jf801729mSearch in Google Scholar
Togun, R. A., Animashaun, T., Kay, J. E., & Aboderin, A. (1994a). A Galactose-binding mitogenic lectin from the seeds of Telfairia occidentalis. Phytochemistry, 35, 1125–1130. DOI: 10.1016/s0031-9422(00)94808-8.10.1016/s0031-9422(00)94808-8Search in Google Scholar
Togun, R. A., Binutu, O. O., Animashaun, T., & Aboderin, A. (1994b). β-Galactoside lectins from the seeds of Tetracarpidium conophorum. Nigerian Journal of Biochemistry, 9, 17–25.Search in Google Scholar
Togun, R. A., Otusanya, O., & Aboderin, A. (2004). On the possible function of Telfairia occidentalis agglutinin in the plant. Journal of Biochemistry and Molecular Biology, 37, 715–719. DOI: 10.5483/bmbrep.2004.37.6.715.10.5483/bmbrep.2004.37.6.715Search in Google Scholar
Tuncel, A., & Okita, T. W. (2013). Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Science, 211, 52–60. DOI: 10.1016/j.plantsci.2013.06.009.10.1016/j.plantsci.2013.06.009Search in Google Scholar
Ueland, P. M. (2011). Choline and betaine in health and disease. Journal of Inherited Metabolic Disease, 34, 3–15. DOI: 10.1007/s10545-010-9088-4.10.1007/s10545-010-9088-4Search in Google Scholar
Valenzuela-Soto, E. M., & Muňoz-Clares, R. A. (1994). Purification and properties of betaine aldehyde dehydrogenase tracted from detached leaves of Amaranthus hypochondriacus L. Journal of Plant Physiology, 143, 145–152. DOI: 10.1016/s0176-1617(11)81678-0.10.1016/s0176-1617(11)81678-0Search in Google Scholar
Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12, 381–412. DOI: 10.1111/1541-4337.12021.10.1111/1541-4337.12021Search in Google Scholar
Vojtíšková, P., Kmentová, K., Kubáň, V., & Kráčmar, S. (2012). Chemical composition of buckwheat plant (Fagopyrum esculentum) and secelcted buckwheat products. Potravinárstvo, 1, 1011–1019. DOI: 10.5219/385.10.5219/385Search in Google Scholar
Wanek, W., & Richter, A. (1993). Iditol:NAD-oxidoreductase in Viscum album: utilization of host-derived sorbitol. Plant Physiology and Biochemistry, 31, 205–211.Search in Google Scholar
Wang, Y., Meng, Y. L., Ishikawa, H., Hibino, T., Tanaka, Y., Nii, N., & Takabe, T. (1999). Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant Cell Physiology, 40, 668–674. DOI: 10.1093/oxfordjournals. pcp.a029591.10.1093/oxfordjournals. pcp.a029591Search in Google Scholar
Weretilnyk, E. A., Bednarek, S., McCue, K. F., Rhodes, D., & Hanson, A. D. (1989). Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 178, 342–352. DOI: 10.1007/bf00391862.10.1007/bf00391862Search in Google Scholar
Wolucka, B. A., & van Montagu, M. (2003). GDP-mannose 3,5-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry, 278, 47483–47490.DOI: 10.1074/jbc.M309135200.10.1074/jbc.M309135200Search in Google Scholar
Wu, B. H., & Li, S. H. (2010). Sorbitol dehydrogenase gene expression and enzyme activity in apple: Tissue specificity during bud development and response to rootstock vigor and growth manipulation. Journal of the American Society for Horticultural Science, 135, 379–387.Search in Google Scholar
Yamaguchi, H., Kanayama, Y., & Yamaki, S. (1994). Purification and properties of NAD-dependent sorbitol dehydrogenase from apple fruit. Plant Cell Physiology, 35,887–892.Search in Google Scholar
Zheleznov, A. V., Solonenko, L. P., & Zheleznova, N. B. (1997). Seed proteins of the wild and the cultivated Amaranthusspecies. Euphytica, 97, 177–182. DOI: 10.1023/a:100307 3804203.10.1023/a:100307 3804203Search in Google Scholar
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Original Paper
- Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
- Original Paper
- Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
- Original Paper
- Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
- Original Paper
- Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
- Original Paper
- Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
- Original Paper
- Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
- Original Paper
- Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
- Original Paper
- Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
- Original Paper
- Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
- Original Paper
- Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
- Original Paper
- Effect of PHB on the properties of biodegradable PLA blends
- Original Paper
- Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
- Short Communication
- UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Articles in the same Issue
- Original Paper
- Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
- Original Paper
- Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
- Original Paper
- Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
- Original Paper
- Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
- Original Paper
- Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
- Original Paper
- Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
- Original Paper
- Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
- Original Paper
- Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
- Original Paper
- Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
- Original Paper
- Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
- Original Paper
- Effect of PHB on the properties of biodegradable PLA blends
- Original Paper
- Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
- Short Communication
- UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces