Home Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
Article
Licensed
Unlicensed Requires Authentication

Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate

  • Hui Ding , Jin-Long Qi , Yu-Jie Gao EMAIL logo , Ru-Ru Chen , She-Jiang Liu and Xu Han
Published/Copyright: May 24, 2016
Become an author with De Gruyter Brill

Abstract

As a novel process intensification technology, microwave-assisted continuous reaction distillation (MRD) was proposed for the esterification reaction and separation of ethyl acetate (EtOAc). The effects of reflux ratio, mole ratio of acetic acid (HOAc) to ethanol (EtOH), reboiler duty, microwave power on EtOH conversions, EtOAc purity and mass ratio of distillate to feed (D/F) were explored. In comparison with conventional heating, the experimental results revealed that the EtOAc purity in the distillate under microwave conditions (MC) was improved. Computer simulations for conventional and MRD systems were performed using the Aspen Plus non-equilibrium stage model to substantiate the experimental results. The model predictions are in good agreement with the experimental data, revealing the accuracy and reliability of the non-equilibrium model. This new MRD process can be an effective and productive method of ester production.

Acknowledgements

The authors wish to express their gratitude for the financial support received from the National Natural Science Foundation of China (no. 21376166).

References

Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. I. (2010). Process intensification of reactive distillation for the synthesis of n-propyl propionate: The effects of microwave radiation on molecular separation and esterification reaction. Industrial & Engineering Chemistry Research, 49, 10287–10296. DOI: 10.1021/ie100555h.10.1021/ie100555hSearch in Google Scholar

Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. (2012). Microwave-promoted synthesis of n-propyl propionate using homogeneous zinc triflate catalyst. Industrial & Engineering Chemistry Research, 51, 1612–1619. DOI: 10.1021/ie200687m.10.1021/ie200687mSearch in Google Scholar

Barbosa, S. L., Dabdoub, M. J., Hurtado, G. R., Klein, S. I., Baroni, A. C. M., & Cunha, C. (2006). Solvent free esterification reactions using Lewis acids in solid phase catalysis. Applied Catalysis A: General, 313, 146–150. DOI: 10.1016/j.apcata.2006.07.015.10.1016/j.apcata.2006.07.015Search in Google Scholar

Chemerinskiy, M. S. (2014). Microwave defrosting of coal. Coke and Chemistry, 57, 219–221. DOI: 10.3103/s1068364x140500 20.10.3103/s1068364x140500 20Search in Google Scholar

Delobelle, V., Croquesel, J., Bouvard, D., Chaix, J. M., & Carry, C. P. (2015). Microwave sinter forging of alumina powder. Ceramics International, 41, 7910–7915. DOI: 10.1016/j.ceramint.2015.02.130.10.1016/j.ceramint.2015.02.130Search in Google Scholar

Ding, Z., Ding, H., & Hou, J. (2012). Kinetics of catalytic synthesis of ethyl acetate under microwave irradiation. Chemical Reaction Engineering and Technology, 2012, 458–463.Search in Google Scholar

Dutia, P. (2004). Ethyl acetate: A techno-commercial profile. Chemical Weekly, 49, 179–186.Search in Google Scholar

Fukushima, J., Kashimura, K., Takayama, S., Sato, M., Sano, S., Hayashi, Y., & Takizawa, H. (2013). In-situ kinetic study on non-thermal reduction reaction of CuO during microwave heating. Materials Letters, 91, 252–254. DOI: 10.1016/j.matlet.2012.09.114.10.1016/j.matlet.2012.09.114Search in Google Scholar

Gao, X., Li, X., Zhang, J., Sun, J., & Li, H. (2013). Influence of a microwave irradiation field on vapor–liquid equilibrium. Chemical Engineering Science, 90, 213–220. DOI: 10.1016/j.ces.2012.12.037.10.1016/j.ces.2012.12.037Search in Google Scholar

Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27, 279–282. DOI: 10.1016/s0040-4039(00)83996-9.10.1016/s0040-4039(00)83996-9Search in Google Scholar

Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. (2011). Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International, 44, 2647–2654. DOI: 10.1016/j.foodres.2011.05.015.10.1016/j.foodres.2011.05.015Search in Google Scholar

Hassini, L., Peczalski, R., & Gelet, J. L. (2015). Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 286, 636–644. DOI: 10.1016/j.powtec.2015.09.009.10.1016/j.powtec.2015.09.009Search in Google Scholar

Horikoshi, S., Matsubara, A., Takayama, S., Sato, M., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2010). Characterization of microwave effects on metal-oxide materials: Zinc oxide and titanium dioxide. Applied Catalysis B: Environmental, 99, 490–495. DOI: 10.1016/j.apcatb.2009.07.028.10.1016/j.apcatb.2009.07.028Search in Google Scholar

Hu, S., Zhang, B. J., Hou, X. Q., Li, D. L., & Chen, Q. L. (2011). Design and simulation of an entrainer-enhanced ethyl acetate reactive distillation process. Chemical Engineering and Processing: Process Intensification, 50, 1252–1265. DOI: 10.1016/j.cep.2011.07.012.10.1016/j.cep.2011.07.012Search in Google Scholar

Kappe, C. O. (2008). Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 37, 1127–1139. DOI: 10.1039/b803001b.10.1039/b803001bSearch in Google Scholar

Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwaveaccelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35, 717–727. DOI: 10.1021/ ar010074v.10.1021/ ar010074vSearch in Google Scholar

Lv, B., Liu, G., Dong, X., Wei, W., & Jin, W. (2012). Novel reactive distillation–pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle. Industrial & Engineering Chemistry Research, 51, 8079–8086. DOI: 10.1021/ie3004072.10.1021/ie3004072Search in Google Scholar

Mandal, A. K., Sen, S., Mandal, S., Guha, C., & Sen, R. (2015). Energy efficient melting of glass for nuclear waste immobilization using microwave radiation. International Journal of Green Energy, 12, 1280–1287. DOI: 10.1080/15435075.2014.895735.10.1080/15435075.2014.895735Search in Google Scholar

Mavandadi, F., & Lidstrom, P. (2004). Microwave-assisted chemistry in drug discovery. Current Topics in Medicinal Chemistry, 4, 773–792. DOI: 10.2174/1568026043451078.10.2174/1568026043451078Search in Google Scholar

Nikačević, N. M., Huesman, A. E. M., Van den Hof, P. M. J., & Stankiewicz, A. I. (2012). Opportunities and challenges for process control in process intensification. Chemical Engineering and Processing: Process Intensification, 52, 1–15. DOI: 10.1016/j.cep.2011.11.006.10.1016/j.cep.2011.11.006Search in Google Scholar

Ramesh, S., Jai Prakash, B. S., & Bhat, Y. S. (2010). Enhancing Brønsted acid site activity of ion exchanged montmorillonite by microwave irradiation for ester synthesis. Applied Clay Science, 48, 159–163. DOI: 10.1016/j.clay.2009.11.053.10.1016/j.clay.2009.11.053Search in Google Scholar

Segovia-Hernández, J. G., Hernández, S., & Bonilla Petriciolet, A. (2015). Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification, 97, 134– 143. DOI: 10.1016/j.cep.2015.09.004.10.1016/j.cep.2015.09.004Search in Google Scholar

Shekarriz, M., Taghipoor, S., Khalili, A. A., & Jamarani, M. S. (2003). Esterification of carboxylic acids with alcohols under microwave irradiation in the presence of zinc triflate. Journal of Chemical Research – Part S, 2003, 172–173.Search in Google Scholar

Sundmacher, K., & Kienle, A. (Eds.) (2003). Reactive distillation: Status and future directions. Weinheim, Germany: Wiley-VCH.Search in Google Scholar

Toukoniitty, B., Mikkola, J. P., Eränen, K., Salmi, T., & Murzin, D. Y. (2005). Esterification of propionic acid under microwave irradiation over an ion-exchange resin. Catalysis Today, 100, 431–435. DOI: 10.1016/j.cattod.2004.09.075.10.1016/j.cattod.2004.09.075Search in Google Scholar

Tsukahara, Y., Higashi, A., Yamauchi, T., Nakamura, T., Yasuda, M., Baba, A., & Wada, Y. (2010). In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. The Journal of Physical Chemistry C, 114, 8965–8970. DOI: 10.1021/jp100509h.10.1021/jp100509hSearch in Google Scholar

Urselmann, M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Computers and Chemical Engineering, 35, 787–805. DOI: 10.1016/j.compchemeng.2011.01.038.10.1016/j.compchemeng.2011.01.038Search in Google Scholar

Vázquez-Ojeda, M., Segovia-Hernández, J. G., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Industrial & Engineering Chemistry Research, 51, 5856–5865. DOI: 10.1021/ie200929t.10.1021/ie200929tSearch in Google Scholar

Xia, S., Dong, X., Zhu, Y., Wei, W., Xiangli, F., & Jin, W. (2011). Dehydration of ethyl acetate–water mixtures using PVA/ceramic composite pervaporation membrane. Separation and Purification Technology, 77, 53–59. DOI: 10.1016/j.seppur.2010.11.019.10.1016/j.seppur.2010.11.019Search in Google Scholar

Received: 2015-11-28
Revised: 2016-1-18
Accepted: 2016-2-11
Published Online: 2016-5-24
Published in Print: 2016-10-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0069/html
Scroll to top button