Home Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
Article
Licensed
Unlicensed Requires Authentication

Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety

  • Małgorzata Bondaryk , Ilona Grabowska-Jadach , Zbigniew Ochal , Grażyna Sygitowicz and Monika Staniszewska EMAIL logo
Published/Copyright: June 25, 2016
Become an author with De Gruyter Brill

Abstract

Hydrolytic enzymes e.g., Saps and KEX2 are, due to their role in Candida virulence, considered important targets for new synthetic inhibitors. MICTI and MICPI values indicate that disruption of SAP1-3 significantly increases the resistance of Candida mutants to β-ketosulfone (1). Contrariwise, sap123∆ showed sensitive phenotype to halogenated methylphenyl sulfone (2). Anticandidal potency of 2 differed in the Candida cells of kex2∆. Sulfone is the most effective agent against the Candida albicans kex2∆ double mutant (MICTI of 0.5 μg mL–1). Up-regulation of KEX2 mediated the resistance of sap4-6∆ towards 2. Both sulfones tested reduced the adhesion of the wild type cells significantly (P < 0.05). Contrariwise, sap123∆ showed significantly enhanced adhesion capability when 1 was used (P < 0.05). Both sulfones had weak fungicidal effect on mature C albicans biofilms. It was shown that the uptake of IP correlates with the membrane perturbations caused by 1 in the blastoconidial cells. Sulfones were found to disturb the basic developmental phases of biofilm growth: adhesion and morphogenesis. Altered KEX2 levels for 1 can be caused by the compensatory mechanism for the maintenance of cell wall integrity and morphogenesis. KEX2 decreases the antifungal activity of sulfones. Sulfones affecting the crucial virulence factors of Candida can even eliminate these fungal infections.

Acknowledgements

The work was supported by the National Science Centre of Poland (No. DEC-2011/03/D/NZ7/ 06198). Studies on biofilm were funded by the National Science Centre of Poland (No. 2014/15/N/NZ6/03710). Syntheses of compounds were funded by the Warsaw University of Technology. We thank Oliver Bader and Joachim Morschhäuser for strains used in the study.

Supplementary data

Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0072).

References

Albrecht, A., Felk, A., Pichova, I., Naglik, J. R., Schaller, M., de Groot, P., MacCallum, D., Odds, F. C., Schäfer, W., Klis, F., Monod, M., & Hube, B. (2006). Glycosylphosphatitylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. Journal of Biological Chemistry, 281, 688–694. 10.1074/jbc.m509297200.Search in Google Scholar

Amberg, D. C., Burke, D. J., & Strathern, J. N. (2005). Yeast RNA isolations, techniques and protocols #6. In D. C. Am-berg, D. J. Burke, & J. N. Strathern (Eds.), Methods in yeast genetics (pp. 127–131). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.Search in Google Scholar

Bader, O., Schaller, M., Klein, S., Kukula, J., Haack, K., Mühlschlegel, F., Korting, H. C., Schäfer, W., & Hube, B. (2001). The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology, 41, 1431–1444. 10.1046/j.1365-2958.2001.02614.x.Search in Google Scholar

Beggah, S., Léchenne, B., Reichard, U., Foundling, S., & Monod, M. (2000). Intra- and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology, 146, 2765– 2773. 10.1099/00221287-146-11-2765.Search in Google Scholar

Bizzerra, F. C., Melo, A. S. A., Katchburian, E., Freymüller, E., Straus, A. H., Takahashi, H. K., & Colombo, A. L. (2011). Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrobial Agents and Chemotherapy, 55, 302–310. 10.1128/aac.00633-10.Search in Google Scholar

Bondaryk, M., Ochal, Z., & Staniszewska, M. (2014). Sul-fone derivatives reduce growth, adhesion and aspartic protease SAP2 gene expression. World Journal of Microbiology and Biotechnology, 30, 2511–2521. 10.1007/s11274-014-1676-2.Search in Google Scholar

Bondaryk, M., Lukowska-Chojnacka, E., & Staniszewska, M. (2015). Tetrazole activity against Candida albicans. The role of KEX2 mutations in the sensitivity to (±)-1-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propan-2-yl acetate. Bioorganic & Medicinal Chemistry Letters, 25, 2657–2663. 10.1016/j.bmcl.2015.04.078.Search in Google Scholar

Bruno, V. M., Shetty, A. C., Yano, J., Fidel, P. L., Jr., Noverr, M. C., & Peters, B. M. (2015). Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio, 6, e00182-15. 10.1128/mbio.00182-15.Search in Google Scholar

Buu, L. M., & Chen, Y. C. (2013). Sap6, a secreted aspartyl proteinase, participates in maintenance the cell wall surface integrity of Candida albicansJournal of Biomedical Science, 20, 101. 10.1186/1423-0127-20-101.Search in Google Scholar

Buu, L. M., & Chen, Y. C. (2014). Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicansJournal of Biomedical Science, 21, 22. 10.1186/1423-0127-21-22.Search in Google Scholar

Carvalho-Pereira, J., Vaz, C., Carneiro, C., Pais, C., & Sam-paio, P. (2015). Genetic variability of Candida albicans Sap8 propeptide in isolates from different types of infection. Biomed Research International, 2015, 148343. 10.1155/2015/148343.Search in Google Scholar

Clinical and Laboratory Standards Institute (2008). Refe renc e method for broth dilution antifungal susceptibility testing of yeasts. M27-A3. Wayne, PA, USA: Clinical and Laboratory Standards Institute.Search in Google Scholar

Correira, A., Lermann, U., Teixeira, L., Cerca, F., Botelho, S., da Costa, R. M., Sampaio, P., Gärtner, F., Morschhäuser, J., Vilanova, M., & Pais, C. (2010). Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infection and Immunity, 78, 4839– 4849. 10.1128/iai.00248-10.Search in Google Scholar

Costa-de-Oliveira, S., Isabel, M., Miranda, I. M., Silva-Diasa, A., Silva, A. P., Rodriguesa, A. G., & Pina-Vaza, C. (2015). Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob Agents Chemother, 59, 4289–4292. 10.1128/aac.05056-14.Search in Google Scholar

Cuéllar-Cruz, M., Vega-González, A., Mendoza-Novelo, B., López-Romero, E., Ruiz-Baca, E., Quintanar-Escorza, M. A., & Villagómez-Castro, J. C. (2012). The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. European Journal of Clinical Microbiology and Infectious Diseases, 31, 2513–2527. 10.1007/s10096-012-1634-6.Search in Google Scholar

De Bernardis, F., Liu, H., O’Mahony, R., La Valle, R., Bar-tollino, S., Sandini, S., Grant, S., Brewis, N., Tomlinson, I., Basset, R. C., Holton, J., Roitt, I. M., & Cassone, A. (2007). Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. Journal of Infectious Diseases, 195, 149–157. 10.1086/509891.Search in Google Scholar

Delbrück, S., & Ernst, J. F. (1993). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicansMolecular Microbiology, 10, 859–866. 10.1111/j.1365-2958.1993.tb00956.x.Search in Google Scholar

Dunkel, N., & Morschhäuser, J. (2011). Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4∆sap5∆sap6∆ mutant. Eukaryot Cell, 10, 54–62. 10.1128/ec.00281-10.Search in Google Scholar

El-Kirat-Chatel, S., Beaussart, A., Alsteens, D., Jackson, D. N., Lipke, P. N., & Dufr˛ene, Y. F. (2013). Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicansNanoscale, 7, 1105–1115. 10.1039/c2nr33215a.Search in Google Scholar

Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicansGenetics, 134, 717– 728.Search in Google Scholar

Garibotto, F. M., Garro, A. D., Masman, M. F., Rodríguez, A. M., Luiten, P. G. M., Raimondi, M., Zacchino, S. A., Somlai, C, Penke, B., & Enriz, R. D. (2010). New small-size peptides possessing antifungal activity. Bioorganic & Medicinal Chemistry, 18, 158–167. 10.1016/j.bmc.2009.11.009.Search in Google Scholar

Gillum, A. M., Tsay, E. Y. H., & Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular & General Genetics, 198, 179–182. 10.1007/bf00328721.Search in Google Scholar

Gregori, C., Glaser, W., Frohner, I. E., Reinoso-Martín, C., Rupp, S., Schüller, C., & Kuchler, K. (2011). Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryotic Cell, 10, 1694– 1704. 10.1128/ec.05187-11.Search in Google Scholar

Jacobsen, I. D., Wilson, D., Wächtler, B., Brunke, S., Naglik, J. R., & Hube, B. (2012). Candida albicans dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 10, 85–93. 10.1586/eri.11.152.Search in Google Scholar

Jung, U. S., Sobering, A. K., Romeo, M. J., & Levin, D. E. (2002). Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Molecular Microbiology, 46, 781–789. 10.1046/j. 1365-2958.2002.03198.x.Search in Google Scholar

Korzyn´ski, M. D., Borys, M., Bialek, J., & Ochal, Z. (2014). A novel method for the synthesis of aryl trihalomethyl sulfones and their derivatization: the search for new sul-fone fungicides. Tetrahedron Letters, 55, 745–748. 10.1016/j.tetlet.2013.12.012.Search in Google Scholar

Kumar, R., & Shukla, P. K. (2010). Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Fungal Biology, 114, 189–197. 10.1016/j.funbio.2009.12.003.Search in Google Scholar

Kumar, R., Saraswat, D., Tati, S., & Edgerton, M. (2015). Novel aggregation properties of Candida albicans secreted aspartyl proteinase Sap6 mediates virulence in oral candidiasis. Infection and Immunity, 83, 2614–2626. 10.1128/iai.00282-15.Search in Google Scholar

Kuo, Z. Y., Chuang, Y. J., Chao, C. C., Liu, F. C., Lan, C. Y., & Chen, B. S. (2013). Identification of infection-and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-Zebrafish infection model. Journal of Innate Immunity, 5, 137–152. 10.1159/000347104.Search in Google Scholar

Lermann, U., & Morschhäuser, J. (2008). Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology, 154, 3281–3295. 10.1099/mic.0.2008/022525-0.Search in Google Scholar

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of rela tive gene expression data using real-time quantitative PCR and the 2~ method. Methods, 25, 402–408. 10.1006/meth.2001.1262.Search in Google Scholar

Ma, C., Du, F., Yan, L., He, G., He, J., Wang, C., Rao, G., Jiang, Y., & Xu, G. (2015). Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules, 20, 17913–17928. 10.3390/molecules201017913.Search in Google Scholar

Majoros, L., Kardos, G., Szabó, B., & Sipiczki, M. (2005). Caspofungin susceptibility testing of Candida inconspicua: correlation of different methods with the minimal fungicidal concentration. Antimicrobial Agents and Chemotherapy, 49, 3486–3488. 10.1128/aac.49.8.3486-3488.2005.Search in Google Scholar

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4, 119–128. 10.4161/viru. 22913.Search in Google Scholar

Miranda, T. T., Vianna, C. R., Rodrigues, L., Rosa, C. A., & Corr˛ea, A., Jr. (2015). Differential proteinase patterns among Candida albicans strains isolated from root canal and lingual dorsum: possible roles in periapical disease. Journal of Endodontics, 41, 841–845. 10.1016/j.joen.2015.01.012.Search in Google Scholar

Mores, A. U., Souza, R. D., Cavalca, L., de Paula e Carvalho, A., Gursky, L. C., Rosa, R. T., Samaranayake, L. P., & Rosa, E. A. R. (2009). Enhancement of secretory aspartyl protease production in biofilms of Candida albicans exposed to sub-inhibitory concentrations of fluconazole. Mycoses, 54, 195– 201. 10.1111/j.1439-0507.2009.01793.x.Search in Google Scholar

Mukherjee, P. K., Chandra, J., Kuhn, D. M., & Ghannoum, M. A. (2003). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 71, 4333–4340. 10.1128/iai.71.8.4333–4340.2003.Search in Google Scholar

Munro, C. A., Selvagglnl, S., de Bruljn, I., Walker, L., Lenardon, M. D., Gerssen, B., Milne, S., Brown, A. J. P., & Gow, N. A. (2007). The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicansMolecular Microbiology, 63, 1399–1413. 10.1111/j.1365- 2958.2007.05588.x.Search in Google Scholar

Naglik, J. R., Challacombe, S. J., & Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and Molecular Biology Reviews, 67, 400–428. 10.1128/mmbr.67.3.400-428.2003.Search in Google Scholar

Naglik, J., Albrecht, A., Bader, O., & Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 6, 915–926. 10.1111/j.1462-5822.2004.00439.x.Search in Google Scholar

Naglik, J. R., Moyes, D., Makwana, J., Kanzaria, P., Tsich-laki, E., Weindl, G., Tappuni, A. R., Rodgers, C. A., Woodman, A. J., Challacombe, S. J., Schaller, M., & Hube, B. (2008). Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology, 154, 3266–3280. 10.1099/mic.0.2008/022293-0.Search in Google Scholar

Newport, G., & Agabian, N. (1997). KEX2 influences Candida albicans proteinase secretion and hyphal formation. Journal of Biological Chemistry, 272, 28954–28961. 10.1074/jbc.272.46.28954.Search in Google Scholar

Newport, G., Kuo, A., Flattery, A., Gill, C., Blake, J. J., Kurtz, M., Abruzzo, G. K., & Agabian, N. (2003). Inactivation of Kex2p diminishes the virulence of Candida albicansJournal of Biological Chemistry, 278, 1713–1720. 10.1074/jbc.m209713200.Search in Google Scholar

Paranjape, V., & Datta, A. (1991). Overexpression of the actin gene is associated with the morphogenesis of Candida albicansBiochemical and Biophysical Research Communications, 179, 423–427. 10.1016/0006-291x(91)91387-r.Search in Google Scholar

Pfaller, M. A., Bale, M., Buschelman, B., Lancaster, M., Espinel-Ingroff, A., Rex, J. H., & Rinaldi, M. G. (1994). Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards Proposed Standard Methods. Journal of Clinical Microbiology, 32, 1650–1653.Search in Google Scholar

Pfaller, M. A., & Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20, 133–163. 10.1128/cmr.00029-06.Search in Google Scholar

Pfaller, M. A., Andes, D. R., Diekema, D. J., Horn, D. L., Reboli, A. C., Rotstein, C., Franks, B., & Azie, N. E. (2014). Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (PATH) registry 2004–2008. PLoS ONE, 9, e101510. 10.1371/jour-nal.pone.0101510.Search in Google Scholar

Phillips, A. J., Sudbery, I., & Ramsdale, M. (2003). Apopto-sis induced by environmental stresses and amphotericin B in Candida albicansProceedings of the National Academy of Sciences, 100, 14327–14332. 10.1073/pnas.2332326100.Search in Google Scholar

Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8, 1117–1126. 10.1517/17460441.2013.807245.Search in Google Scholar

Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L., & López-Ribot, J. L. (2002a). Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 49, 973–980. 10.1093/jac/dkf049.Search in Google Scholar

Ramage, G., VandeWalle, K., López-Ribot, J. L., & Wickes, B. L. (2002b). The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicansFEMS Microbiology Letters, 214, 95–100. 10.1111/j.1574-6968.2002.tb11330.x.Search in Google Scholar

Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses to Candida albicans infection. Virulence, 6, 327– 337. 10.1080/21505594.2015.1004977.Search in Google Scholar

Samaranayake, Y. H., Cheung, B. P., Yau, J. Y., Yeung, S. K., & Samaranayake, L. P. (2013). Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE, 8, e62902. 10.1371/journal.pone.0062902.Search in Google Scholar

Schneider, S., & Morschhäuser, J. (2015). Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors. Antimicrobial Agents and Chemotherapy, 59, 558–569. 10.1128/aac.04448-14.Search in Google Scholar

Sherry, L., Rajendran, R., Lappin, D. F., Borghi, E., Perdoni, F., Falleni, M., Tosi, D., Smith, K., Williams, C., Jones, B., Nile, C. J., & Ramage, G. (2014). Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiology, 14, 182. 10.1186/1471-2180-14-182.Search in Google Scholar

Silva, N. C., Nery, J. M., & Dias, A. L. (2013). Aspartic pro-teinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses, 57, 1–11. 10.1111/myc.12095.Search in Google Scholar

Staib, P., Lermann, U., Blaß-Warmuth, J., Degel, B., Würzner, R., Monod, M., Schirmeister, T., & Morschhäuser, J. (2008). Tetracycline-inducible expression of individual secreted as-partic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrobial Agents and Chemotherapy, 52, 146–156. 10.1128/aac.01072-07.Search in Google Scholar

Staniszewska, M., Bondaryk, M., & Ochal, Z. (2014a). Polish patent No. PL P.408765. Warsaw, Poland: Polish Patent Office.Search in Google Scholar

Staniszewska, M., Bondaryk, M., Malewski, T., & Schaller, M. (2014b). The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC). Central European Journal of Biology, 9, 796–810. 10.2478/s11535-014-0311-4.Search in Google Scholar

Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015a). Susceptibility of Candida albicans to new synthetic sulfone derivatives. Archiv der Pharmazie, 348, 132–143. 10.1002/ardp.201400360.Search in Google Scholar

Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015b). New synthetic sulfone derivatives inhibit growth, adhesion and the leucine arylamidase APE2 gene expression of Candida albicans in vitro. Bioorganic & Medicinal Chemistry, 23, 314– 321. 10.1016/j.bmc.2014.11.038.Search in Google Scholar

Teste, M. A., Duquenne, M., Fran¸cois, J. M., & Parrou, J. L. (2009). Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccha-romyces cerevisiaeBMC Molecular Biology, 10, 1–15. 10.1186/1471-2199-10-99.Search in Google Scholar

Watts, H. J., Cheah, F. S. H., Hube, B., Sanglad, D., & Gow, N. A. R. (1998). Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiology Letters, 159, 129–135. 10.1111/j.1574-6968.1998.tb12851.x.Search in Google Scholar

Wu, T., Wright, K., Hurst, S. F., & Morrison, C. J. (2000). Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrobial Agents and Chemotherapy, 44, 1200–1208. 10.1128/aac.44.5.1200-1208.2000.Search in Google Scholar

Zavrel, M., Majer, O., Kuchler, K., & Rupp, S. (2012). Transcription factor Efg1 shows a haploinsufficiency phenotype in modulating the cell wall architecture and immunogenicity of Candida albicansEukaryotic Cell, 11, 129–140. 10.1128/ec.05206-11.Search in Google Scholar

Received: 2015-10-9
Revised: 2016-2-22
Accepted: 2016-2-25
Published Online: 2016-6-25
Published in Print: 2016-10-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0072/html
Scroll to top button