Startseite Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins

  • Yin Zhou , Rui-Ren Tang EMAIL logo und Dan Song
Veröffentlicht/Copyright: 21. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

N-hydroxyphthalimide (NHPI) combined with stable and recoverable transition metal–aluminium binary hydrotalcite-like compounds (M-Al HTLcs, M = Cu, Ni, Co) as an unprecedented catalytic system was demonstrated for the allylic carbonylation, as the model reaction, of cyclic olefins with tert-butyl hydroperoxide (TBHP), using isophorone (IP) to ketoisophorone (KIP). The results showed NHPI combined with Cu-Al HTLcs to be an efficient catalytic system and the influences of various reaction conditions of the catalytic reaction were optimised. A maximum IP conversion of 68.0 % with 81.8 % selectivity to KIP was afforded under the optimal reaction conditions. Experiments of repeatability and restorability showed Cu-Al HTLcs to be stable for at least five cycles without noticeable loss of catalytic activity. Expanding substrates could also be efficiently converted to the corresponding ketones under the optimised reaction conditions with appreciable yields. A plausible catalytic reaction mechanism was proposed.

References

Alejandre, A., Medina, F., Salagre, P., Correig, X., & Sueiras, J. E. (1999). Preparation and study of Cu–Al mixed oxides via hydrotalcite-like precursors. Chemistry of Materials, 11, 939–948. DOI: 10.1021/cm980500f.10.1021/cm980500fSuche in Google Scholar

Blanch-Raga, N., Palomares, A. E., Martinez-Triguero, J., Fetter, G., & Bosch, P. (2013). Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene. Industrial & Engineering Chemistry Research, 52, 15772–15779. DOI: 10.1021/ie4024935.10.1021/ie4024935Suche in Google Scholar

Chen, K. X., Sun, Y., Wang, C. M., Yao, J., Chen, Z. R., & Li, H. R. (2012). Aerobic oxidation of β-isophorone catalyzed by N-hydroxyphthalimide: the key features and mechanism elucidated. Physical Chemistry Chemical Physics, 14, 12141– 12146. DOI: 10.1039/c2cp41617d.10.1039/c2cp41617dSuche in Google Scholar PubMed

Chen, K. X., Zhang, P. F., Wang, Y., & Li, H. R. (2014). Metalfree allylic/benzylic oxidation strategies with molecular oxygen: recent advances and future prospects. Green Chemistry, 16, 2344–2374. DOI: 10.1039/c3gc42135j.10.1039/c3gc42135jSuche in Google Scholar

Chen, K. X., Yao, J., Chen, Z. R., & Li, H. R. (2015). Structure–reactivity landscape of N-hydroxyphthalimides with ionic-pair substituents as organocatalysts in aerobic oxidation. Journal of Catalysis, 331, 76–85. DOI: 10.1016/j.jcat.2015.08.021.10.1016/j.jcat.2015.08.021Suche in Google Scholar

Cunha, A. F., Wu, Y. J., Santos, J. C., & Rodrigues, A. E. (2012). Steam reforming of ethanol on copper catalysts derived from hydrotalcite-like materials. Industrial & Engineering Chemistry Research, 51, 13132–13143. DOI: 10.1021/ie301645f.10.1021/ie301645fSuche in Google Scholar

Gao, S., Tang, R. R., & Zhou, Y. (2015). Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts. Chemical Papers, 69, 1156–1165. DOI: 10.1515/chempap-2015-0130.10.1515/chempap-2015-0130Suche in Google Scholar

Guida, A., Lhouty, M. H., Tichit, D., Figueras, F., & Geneste, P. (1997). Hydrotalcites as base catalysts. Kinetics of Claisen–Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Applied Catalysis A: General, 164, 251–264. DOI: 10.1016/s0926-860x(97)00175-0.10.1016/s0926-860x(97)00175-0Suche in Google Scholar

Hermans, I., Van Deun, J., Houthoofd, K., Peeters, J., & Jacobs, P. A. (2007). Silica-immobilized N-hydroxyphthalimide: An efficient heterogeneous autoxidation catalyst. Journal of Catalysis, 251, 204–212. DOI: 10.1016/j.jcat.2007.06.025.10.1016/j.jcat.2007.06.025Suche in Google Scholar

Kaneda, K., & Ueno, S. (1996). Development of hydrotalcite catalysts in heterogeneous Baeyer–Villiger oxidation. In B. K. Warren, & S. T. Oyama (Eds.), Heterogeneous hydrocarbon oxidation (ACS Symposium Series, Vol. 638, pp. 300– 318). Washington, DC, USA: American Chemical Society. DOI: 10.1021/bk-1996-0638.ch022.10.1021/bk-1996-0638.ch022Suche in Google Scholar

Kishore, D., & Rodrigues, A. E. (2008). Liquid phase catalytic oxidation of isophorone with tert-butylhydroperoxide over Cu/Co/Fe–MgAl ternary hydrotalcites. Applied Catalysis A: General, 345, 104–111. DOI: 10.1016/j.apcata.2008.04.029.10.1016/j.apcata.2008.04.029Suche in Google Scholar

Li, Y. C., Lee, T. B., Wang, T. Y., Gamble, A. V., & Gorden, A. E. V. (2012). Allylic C-H activations using Cu(II) 2-quinoxalinol salen and tert-butyl hydroperoxide. The Journal of Organic Chemistry, 77, 4628–4633. DOI: 10.1021/jO300372q.10.1021/jO300372qSuche in Google Scholar

Liu, J., Zhu, H. Y., & Cheng, X. H. (2009). CrO3/NHPI adsorbed on activated clay: A new supported reagent for allylic selective oxidation of ∆5-sterols. Synthetic Communications, 39, 1076–1083. DOI: 10.1080/00397910802484114.10.1080/00397910802484114Suche in Google Scholar

Liu, C. H., Li, F., & Tang, R. R. (2010). Effective aerobic allylic oxidation of β-ionone and series of olefins catalyzed by phosphomolybdic acid. Bulletin of the Korean Chemical Society, 31, 1723–1725. DOI: 10.5012/bkcs.2010.31.6.1723.10.5012/bkcs.2010.31.6.1723Suche in Google Scholar

Liu, G. Y., Tang, R. R., & Wang, Z. (2014). Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catalysis Letters, 144, 717–722. DOI: 10.1007/s10562-014-1200-1.10.1007/s10562-014-1200-1Suche in Google Scholar

Melone, L., & Punta, C. (2013). Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein Journal of Organic Chemistry, 9, 1296–1310. DOI: 10.3762/bjoc.9.146.10.3762/bjoc.9.146Suche in Google Scholar PubMed PubMed Central

Mikulova, Z., Čuba, P., Balabánová, J., Rojka, T., Kovanda, F., & Jirátová, K. (2007). Calcined Ni–Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity. Chemical Papers, 61, 103–109. DOI: 10.2478/s11696-007-0006-7.10.2478/s11696-007-0006-7Suche in Google Scholar

Nakamura, A., & Nakada, M. (2013). Allylic oxidations in natural product synthesis. Synthesis, 45, 1421–1451. DOI: 10.1055/s-0033-1338426.10.1055/s-0033-1338426Suche in Google Scholar

Orlińska, B. (2010). N-Hydroxyphthalimide in combination with Cu(II), Co(II) or Mn(II) salts as catalytic systems for the oxidation of isopropyl-aromatic hydrocarbons with oxygen. Tetrahedron Letters, 51, 4100–4102. DOI: 10.1016/j. tetlet.2010.05.128.10.1016/j. tetlet.2010.05.128Suche in Google Scholar

Qiao, Z. A., Zhang, P. F., Chai, S. H., Chi, M. F., Veith, G. M., Gallego, N. C., & Dai, S. (2014). Lab-in-a-shell: Encapsulating metal clusters for size sieving catalysis. Journal of the American Chemical Society, 136, 11260–11263. DOI: 10.1021/ja505903r.10.1021/ja505903rSuche in Google Scholar PubMed

Rajabi, F., Luque, R., Clark, J. H., Karimi, B., & Macquarrie, D. J. (2011). A silica supported cobalt (II) Salen complex as efficient and reusable catalyst for the selective aerobic oxidation of ethyl benzene derivatives. Catalysis Communications, 12, 510–513. DOI: 10.1016/j.catcom.2010.11.024.10.1016/j.catcom.2010.11.024Suche in Google Scholar

Shaabani, A., & Rahmati, A. (2008). Aerobic oxidation of alkyl arenes using a combination of N-hydroxy phthalimide and recyclable cobalt(II) tetrasulfophthalocyanine supported on silica. Catalysis Communications, 9, 1692–1697. DOI: 10.1016/j.catcom.2007.12.023.10.1016/j.catcom.2007.12.023Suche in Google Scholar

Skobelev, I. Y., Sorokin, A. B., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2013). Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis, 298, 61–69. DOI: 10.1016/j.jcat.2012.11.003.10.1016/j.jcat.2012.11.003Suche in Google Scholar

Wang, J. R., Liu, L., Wang, Y. F., Zhang, Y., Deng, W., & Guo, Q. X. (2005). Aerobic oxidation with N-hydroxyphthalimide catalysts in ionic liquid. Tetrahedron Letters, 46, 4647–4651. DOI: 10.1016/j.tetlet.2005.04.136.10.1016/j.tetlet.2005.04.136Suche in Google Scholar

Wang, C. M., Wang, G. L., Mao, J. Y., Yao, Z., & Li, H. R. (2010). Metal and solvent-free oxidation of α-isophorone to ketoisophorone by molecular oxygen. Catalysis Communications, 11, 758–762. DOI: 10.1016/j.catcom.2010.02.010.10.1016/j.catcom.2010.02.010Suche in Google Scholar

Wang, H. Y., Yi, H. H., Tang, X. L., Yu, L. L., He, D., Zhao, S. Z., & Li, K. (2013). Reactivation of CoNiAl calcined hydrotalcite-like compounds for hydrolysis of carbonyl sulfide. Industrial & Engineering Chemistry Research, 52, 9331– 9336. DOI: 10.1021/ie400684h.10.1021/ie400684hSuche in Google Scholar

Wang, W., Xu, Z. X., Guo, Z. L., Jiang, C. F., & Chu, W. (2015). Layered double hydroxide and related catalysts for hydrogen x Y. Zhou et al./Chemical Papers production and a biorefinery. Chinese Journal of Catalysis, 36, 139–147. DOI: 10.1016/s1872-2067(14)60229-1.10.1016/s1872-2067(14)60229-1Suche in Google Scholar

Xu, Z. P., & Zeng, H. C. (2001). Decomposition pathways of hydrotalcite-like compounds Mg1−xAlx(OH)2(NO3)x. nH2O as a continuous function of nitrate anions. Chemistry of Materials, 13, 4564–4572. DOI: 10.1021/cm010347g.10.1021/cm010347gSuche in Google Scholar

Yang, G. Y., Zhang, Q. H., Miao, H., Tong, X. L., & Xu, J. (2005). Selective organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide. Organic Letters, 7, 263–266. DOI: 10.1021/ol047749p.10.1021/ol047749pSuche in Google Scholar PubMed

Yang, D. H., Liu, M. D., Zhao, W. J., & Gao, L. (2008). A comparative oxidation of cyclohexane catalyzed by N-hydroxyphthalimide and ZSM-5 supported Co(II), Mn(II), Ni(II), Zn(II), Fe(III) with molecular oxygen in the absence of solvents and reductants. Catalysis Communications, 9, 2407–2410. DOI: 10.1016/j.catcom.2008.05.039.10.1016/j.catcom.2008.05.039Suche in Google Scholar

Yang, X. M., Zhou, L. P., Chen, Y., Chen, C., Su, Y. L., Miao, H., & Xu, J. (2009). A promotion effect of alkaline-earth chloride on N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons. Catalysis Communications, 11, 171–174. DOI: 10.1016/j.catcom.2009.09.019.10.1016/j.catcom.2009.09.019Suche in Google Scholar

Yao, Z., Hu, X. B., Mao, J. Y., & Li, H. R. (2009). An environmentally benign catalytic oxidation of cholesteryl acetate with molecular oxygen by using N-hydroxyphthalimide. Green Chemistry, 11, 2013–2017. DOI: 10.1039/b915737a.10.1039/b915737aSuche in Google Scholar

Zalomaeva, O. V., Ivanchikova, I. D., Kholdeeva, O. A., & Sorokin, A. B. (2009). Kinetics and mechanism of the oxidation of alkyl substituted phenols and naphthols with tBuOOH in the presence of supported iron phthalocyanine. New Journal of Chemistry, 33, 1031–1037. DOI: 10.1039/b821534k.10.1039/b821534kSuche in Google Scholar

Zhao, L., Li, X. Y., Quan, X., & Chen, G. H. (2011). Effects of surface features on sulfur dioxide adsorption on calcined NiAl hydrotalcite-like compounds. Environmental Science & Technology, 45, 5373–5379. DOI: 10.1021/es200784e.10.1021/es200784eSuche in Google Scholar PubMed

Zheng, G. X., Liu, C. H., Wang, Q. F., Wang, M. Y., & Yang, G. Y. (2009). Metal-free: An efficient and selective catalytic aerobic oxidation of hydrocarbons with oxime and N-hydroxyphthalimide. Advanced Synthesis & Catalysis, 351, 2638–2642. DOI: 10.1002/adsc.200900509.10.1002/adsc.200900509Suche in Google Scholar

Zhou, J., & Tang, Y. (2005). The development and application of chiral trisoxazolines in asymmetric catalysis and molecular recognition. Chemical Society Reviews, 34, 664–676. DOI: 10.1039/b408712g.10.1039/b408712gSuche in Google Scholar PubMed

Zhou, W. Y., Tian, P., Sun, F. a., He, M. Y., & Chen, Z. X. (2015). Efficient catalysis of the aerobic Baeyer– Villiger oxidation over a bifunctional catalyst based on cobalt tetraphenylporphyrin intercalated into ZN2Al hydrotalcite. Asian Journal of Organic Chemistry, 4, 33–37. DOI: 10.1002/ajoc.201402224.10.1002/ajoc.201402224Suche in Google Scholar

Received: 2015-9-17
Revised: 2015-12-3
Accepted: 2015-12-11
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0035/pdf?lang=de
Button zum nach oben scrollen