Home Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
Article
Licensed
Unlicensed Requires Authentication

Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre

  • Jakub Zajíc , Milan Bittner , Tomáš Brányik , Andrey Solovyev , Stanislav Šabata , Gabriela Kuncová EMAIL logo and Marie Pospíšilová
Published/Copyright: April 21, 2016
Become an author with De Gruyter Brill

Abstract

Physico–chemical models of the interactions of cells with solid surfaces, which use contact angles and zeta potentials, indicated more facile adsorption of cells of Pseudomonas putida TVA8 on the quartz surface after its treatment with 3-aminopropyltriethoxysilane (APTES). A whole-cell optical fibre sensor of toluene was prepared by the adsorption of P. putida TVA8, bacteria producing light in contact with toluene on the wider end of APTES-treated quartz tapered optical fibre. The results of the measurements of luminescence from both sides of the layer of adsorbed cells were compared. Over the 135 days trial, the fibre biosensor was repetitively induced with toluene solution (26.5 mg L−1) 68 times. The intensities of bioluminescence gradually decreased due to release of the adsorbed cells and they were only temporarily restored by the addition of nutrients. The intensities of bioluminescence induced with contaminated ground water were lower than in the mineral medium (MSM) with the same content of toluene.

Acknowledgements

This work was financially supported by the project “BIO-OPT-XUV Research Team Advancement” at the Faculty of Biomedical Engineering, CTU, Prague (MEYSESF Project no. CZ.1.07/2.3.00/20.0092).

Supplementary data

Supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2016-0031).

References

Adamczyk, Z. (2006). Particles at interfaces: interactions, deposition, structure. London, UK: Academic Press.Search in Google Scholar

Applegate, B. M., Kehrmeyer, S. R., & Sayler, G. S. (1998). Achromosomally based todluxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing.Applied and Environmental Microbiology, 64, 2730–2735.10.1128/AEM.64.7.2730-2735.1998Search in Google Scholar

Belkin, S. (2003). Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology, 6, 206–212. DOI: 10.1016/s1369-5274(03)00059-6.10.1016/s1369-5274(03)00059-6Search in Google Scholar

Bittner, M., Jarque, S., & Hilscherova, K. (2015). Polymerimmobilized ready-to-use recombinant yeast assays for the detection of endocrine disruptive compounds. Chemosphere, 132, 56–62. DOI: 10.1016/j.chemosphere.2015.02.063.10.1016/j.chemosphere.2015.02.063Search in Google Scholar PubMed

Bos, R., van der Mei, H. C., & Busscher, H. J. (1999). Physicochemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiology Reviews, 23, 179–230. DOI: 10.1111/j.15746976.1999.tb00396.x.10.1111/j.15746976.1999.tb00396.xSearch in Google Scholar

Charrier, T., Durand, M. J., Affi, M., Jouanneau, S., Gezekel, H., & Thouand, G. (2010). Bacterial bioluminescent biosensor characterisation for on-line monitoring pf heavy pollution in waste water treatment plant effluents, biosensors. In P. A. Serra (Ed.), Biosensors (pp. 302). Rijeka, Croatia: InTech Open.Search in Google Scholar

Depagne, C., Roux, C., & Coradin, T. (2011). How to design cell-based biosensors using the sol–gel process. Analytical and Bioanalytical Chemistry, 400, 965–976. DOI:10.1007/s00216-010-4351-y.10.1007/s00216-010-4351-ySearch in Google Scholar PubMed

Diao, M., Taran, E., Mahler, S., & Nguyen, A. V. (2014). A concise review of nanoscopic aspects of bioleaching bacteria–mineral interactions. Advances Colloid and Interface Science, 212, 45–63. DOI: 10.1016/j.cis.2014.08.005.10.1016/j.cis.2014.08.005Search in Google Scholar PubMed

Diplock, E. E., Alhadrami, H. A., & Paton, G. I. (2009). Application of microbial bioreporters in environmental microbiology and bioremediation. Advances in Biochemical Engineering/Biotechnology, 118, 189–210, DOI: 10.1007/10_2009_3.10.1007/10_2009_3Search in Google Scholar PubMed

Eltzov, E., Pavluchkov, V., Burstin, M., & Marks, R. S. (2011). Creation of a fiber optic based biosensor for air toxicity monitoring. Sensors and Actuators B: Chemical, 155, 859–867.DOI: 10.1016/j.snb.2011.01.062.10.1016/j.snb.2011.01.062Search in Google Scholar

Flickinger, M. C., Schottel, J. L., Bond, D. R., Aksan, A.,& Scriven, L. E. (2007). Painting and printing living bacteria:Engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnology Progress, 23, 2–17. DOI: 10.1021/bp060347r.10.1021/bp060347rSearch in Google Scholar PubMed

Ivask, A., Green, T., Polyak, B., Mor, A., Kahru, A., Virta, M., & Marks, R. (2007). Fiber-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 22, 1396–1402. DOI:10.1016/j.bios.2006.06.019.10.1016/j.bios.2006.06.019Search in Google Scholar PubMed

Johnson, P. E., Muttil, P., MacKenzie, D., Carnes, E., Pelowitz, J., Mara, N. M., William, M., Mook, W. M., Jett, S. D., Dunphy, D. R., Timmins, G. S., & Brinker, J. C. (2015). Spraydried multiscale nano-biocomposites containing living cells. ACS Nano, 9, 6961–6977. DOI: 10.1021/acsnano.5b01139.10.1021/acsnano.5b01139Search in Google Scholar

Kalabova, H., Pospisilova, M., Jirina, M., & Kuncová, G. (2013). Whole-cell biosensor for detection of environmental pollution – enhancement of detected bioluminescence.Current Opinion in Biotechnology, 24, S32. DOI: 10.1016/j.copbio.2013.05.056.10.1016/j.copbio.2013.05.056Search in Google Scholar

Kuncova, G., Pazlarova, J., Hlavata, A., Ripp, S., & Sayler, G. S. (2011). Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecological Indicators,11, 882–887. DOI: 10.1016/j.ecolind.2010.12.001.10.1016/j.ecolind.2010.12.001Search in Google Scholar

Kuncová, G., Pospíšilova, M., & Solovyev, A. (2012). Optical fiber whole cell bioluminescent sensor. In Proceedings of the XX. International Conference on Bioencapsulation, September 21–24, 2012, (pp. 96–97). Orillia, Ontario, Canada: Queens university.Search in Google Scholar

Luo, B., Zhu, Y., Sun, C., Li, Y., & Han, Y. (2015). Flotation and adsorption of a new collector α-bromodecanoic acid on quartz surface. Minerals Engineering, 77, 86–92. DOI: 10.1016/j.mineng.2015.03.003.10.1016/j.mineng.2015.03.003Search in Google Scholar

Michelini, E., & Roda, A. (2012). Staying alive: new perspectives on cell immobilization for biosensing purposes. Analytical and Bioanalytical Chemistry, 402, 1785–1797. DOI: 10.1007/s00216-011-5364-x.10.1007/s00216-011-5364-xSearch in Google Scholar

Nagar, E., & Schwarz, R. (2015). To be or not to be planktonic? Self-inhibition of biofilm development. Environmental Microbiology, 17, 1477–1486. DOI: 10.1111/1462-2920.12583.10.1111/1462-2920.12583Search in Google Scholar

Nivens, D. E., McKnight, T. E., Moser, S. A., Osbourn, S. J., Simpson, M. L., & Sayler, G. S. (2004). Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. Journal of Applied Microbiology, 96, 33–46. DOI: 10.1046/j.1365-2672.2003.02114.x.10.1046/j.1365-2672.2003.02114.xSearch in Google Scholar

Polyak, B., Bassis, E., Novodvorets, A., Belkin, S., & Marks, R. (2001). Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sensors and Actuators B: Chemical, 74, 18–26. DOI: 10.1016/s0925-4005(00)00707-3.10.1016/s0925-4005(00)00707-3Search in Google Scholar

Pospíšilova, M., Kuncová, G., & Trögl, J. (2015). Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors, 15, 25208–25259. DOI: 10.3390/s151025208.10.3390/s151025208Search in Google Scholar PubMed PubMed Central

Rassinger, J. D., Marrazza, G., Briganti, F., Scozzafava, A., Mascini, M., & Turner, A. P. F. (2005). Evaluation of a FIA operated amperometric bacterial biosensor, based on Pseudomonas putida F1 for the detection of benzene, toluene, ethylbenzene and xylenes (BETEX). Analytical Lettters, 38, 1531–1547. DOI: 10.1081/al-200065793.10.1081/al-200065793Search in Google Scholar

Ripp, S., Nivens, D. E., Werner, C., & Sayler, G. S. (2000). Bioluminescent most-probable number-monitoring of a genetically engineered bacterium during a long-term contained field release. Applied Microbiology and Biotechnology, 53, 736– 741. DOI: 10.1007/s002530000343.10.1007/s002530000343Search in Google Scholar

Roda, A., Guardigli, M., Michelini, E., & Mirasoli, M. (2009). Bioluminescence in analytical chemistry and in vivo imaging. TRAC-Trends in Analytical Chemistry, 28, 307–322. DOI: 10.1016/j.trac.2008.11.015.10.1016/j.trac.2008.11.015Search in Google Scholar

Roda, A., Ceveninia, L., Michelini, E., & Branchinic, B. R. (2011). A portable bioluminescence engineered cell-based J. Zajíc et al./Chemical Papers xi biosensor for on-site applications. Biosensors and Bioelectronics, 26, 3647–3653. DOI: 10.1016/j.bios.2011.02.022.10.1016/j.bios.2011.02.022Search in Google Scholar

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press.Search in Google Scholar

Snyder, W., & Love, J. D. (1983). Optical waveguade theory. London, UK: Chapman and HallSearch in Google Scholar

Trögl, J., Kuncová, G., Kubicová, L., Pařik, P., Hálová, J., Demnerova, K., Ripp, S., & Sayler, G. S. (2007). Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia microbiologica, 52, 3–14. DOI: 10.1007/bf02932131.10.1007/bf02932131Search in Google Scholar

van Oss, C. J. (1995). Hydrophobicity of biosurfaces – Origin, quantitative determination and interaction energies. Colloids and Surfaces B: Biointerfaces, 5, 91–110. DOI: 10.1016/0927-7765(95)01217-7.10.1016/0927-7765(95)01217-7Search in Google Scholar

van Oss, C. J. (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16, 177–190. DOI: 10.1002/jmr.618.10.1002/jmr.618Search in Google Scholar PubMed

van Oss, C. J. (2006). Interfacial forces in aqueous media. Boca Raton, FL, USA: Taylor & Francis10.1201/9781420015768Search in Google Scholar

Vrbova, H., Pospisilova, M., & Kuncova, G. (2009). Optical fiber elements for increasing bioluminescence coupling. In Proceedings of 8. Československá konference Trendy v Biomedícinskom Inžinierstve, September 16–18, 2009 (pp. 229–233).Bratislava, Slovakia: Slovak University of Technology in Bratislava.Search in Google Scholar

Wang, Y., Zhang, D., Davison, P. A., & Huang, W. E. (2014). Bacterial whole-cell biosensors for the detection of contaminants in water and soils, in environmental microbiology. Methods in Molecular Biology, 1096, 155–168. DOI: 10.1007/978-1-62703-712-9 13.10.1007/978-1-62703-712-9 13Search in Google Scholar

Xu, T., Perry, N., Chuahanm, A., Sayler, G. S., & Ripp, S. (2014). Microbial Indicators for Monitoring Pollution and Bioremediation. In S. Das (Ed.). Microbial biodegradation and bioremediation, (pp. 115–132). Amsterdam, The Netherlands: Elsevier.10.1016/B978-0-12-800021-2.00005-4Search in Google Scholar

Zhong, Z., Fritzsche, M., Pieper, S. B., Wood, T. K., Lear, K. L., Dandy, D. S., Reardon, K. F. (2011). Fiber optic monoxygenase biosensor for toluene concentration measurement in aqueous samples. Biosensor and Bioelectronics, 26, 2407– 2412. DOI: 10.1016/j.bios.2010.10.021.10.1016/j.bios.2010.10.021Search in Google Scholar PubMed

Received: 2015-10-12
Revised: 2015-12-17
Accepted: 2015-12-19
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0031/html
Scroll to top button