Home ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
Article
Licensed
Unlicensed Requires Authentication

ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water

  • Faramarz Rostami-Charati EMAIL logo , Rahimeh Hajinasiri , Seyyed Zahra Sayyed Alangi and Saeid Afshari Sharif Abad
Published/Copyright: April 21, 2016
Become an author with De Gruyter Brill

Abstract

4-amino-2-iminodithiole derivatives were synthesised via multi-component reactions of tetramethyl thiourea, isothiocyanates and alkyl bromides in the presence of ZnO nanorods (ZnO-NR) as the catalyst in water at ambient temperature. These reactions provide low yields without catalysts. The catalyst exhibited significant reusable activity.

Acknowledgments

We gratefully acknowledge the financial and spiritual support received from Gonbad Kavous University. This work was also supported by the Research Council of Islamic Azad University of Qaemshahr.

References

Abbaz, T., Bendjeddou, A., Gouasmia, A., Regainia, Z., & Villemin, D. (2012). Synthesis and electrochemical proprieties of novel unsymmetrical bis-tetrathiafulvalenes and electrical conductivity of their charge transfer complexes with tetracyanoquinodimethane (TCNQ). International Journal of Molecular Sciences, 13, 7872–7885. DOI: 10.3390/ijms13077872.10.3390/ijms13077872Search in Google Scholar PubMed PubMed Central

Beydoun, D., Amal, R., Low, G., & McEvoy, S. (1999). Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1, 439–458. DOI: 10.1023/a:1010044830871.10.1023/a:1010044830871Search in Google Scholar

Breslow, R. (1991). Hydrophobic effects on simple organic reactions in water. Accounts of Chemical Research, 24, 159–164. DOI: 10.1021/ar00006a001.10.1021/ar00006a001Search in Google Scholar

Capuano, L., Bronder, M., Hell, W., Mörsdorf, P., & Hoge, R. (1980). Neue Heterocyclisierungen mit Malonestern 1,3-Dithiole; 1,3-Oxathiole; ∆2-Oxazoline und das Vinylendipyridiniumdikation. Monatshefte für Chemie – Chemical Monthly, 111, 899–907. DOI: 10.1007/bf00899255. (in German)10.1007/bf00899255Search in Google Scholar

Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., & Agostiano, A. (2005). UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B, 60, 1–11. DOI: 10.1016/j.apcatb.2005.02.013.10.1016/j.apcatb.2005.02.013Search in Google Scholar

Demko, Z. P., & Sharpless, K. B. (2001). Preparation of 5-substituted 1H-tetrazoles from nitriles in water. Journal of Organic Chemistry, 66, 7945–7950. DOI: 10.1021/jo010 635w.10.1021/jo010 635wSearch in Google Scholar

Ferraris, J., Cowan, D. O., Walatka, V., & Perlstein, J. H. (1973). Electron transfer in a new highly conducting donor– acceptor complex. Journal of the American Chemical Society, 95, 948–949. DOI: 10.1021/ja00784a066.10.1021/ja00784a066Search in Google Scholar

Grieco, P. A. (1998). Organic synthesis in water. London, UK: Blackie Academic & Professional.10.1007/978-94-011-4950-1Search in Google Scholar

Guillemet, M., Raoul, J. M., Pellé, F., Robert, A., & Baudy-Floc’h, M. (1995). Simple synthesis of new 2-imino-4-amino-1,3-dithioles and 2-lmino-4-hydroxy-1,3-dithioles. Journal of Materials Chemistry, 5, 35–39. DOI: 10.1039/jm9950500035.10.1039/jm9950500035Search in Google Scholar

Gupta, M., Paul, S., Gupta, R., & Loupy, A. (2005). ZnO: A versatile agent for benzylic oxidations. Tetrahedron Letters, 46, 4957–4960. DOI: 10.1016/j.tetlet.2005.05.104.10.1016/j.tetlet.2005.05.104Search in Google Scholar

Hosseini-Sarvari, M., Sharghi, H., & Etemad, S. (2008). Nanocrystalline ZnO for Knoevenagel condensation and reduction of the carbon, carbon double bond in conjugated alkenes. Helvetica Chimica Acta, 91, 715–724. DOI: 10.1002/hlca.200890072.10.1002/hlca.200890072Search in Google Scholar

Kobayashi, S., & Manabe, K. (2002). Development of novel lewis acid catalysts for selective organic reactions in aqueous media. Accounts of Chemical Research, 35, 209–217. DOI: 10.1021/ar000145a.10.1021/ar000145aSearch in Google Scholar

Li, C. J., & Chang, T. H. (1997). Organic reactions in aqueous media. New York, NY, USA: Wiley.Search in Google Scholar

Li, C. J. (2005). Organic reactions in aqueous media with a focus on carboncarbon bond formations: A decade update. Chemical Reviews, 105, 3095–3166. DOI: 10.1021/cr030009u.10.1021/cr030009uSearch in Google Scholar

Lietti, L., Tronconi, E., Forzatti, P., & Busca, G. (1989). Surface properties of ZnO-based catalysts and related mechanistic features of the higher alcohol synthesis by FT-IR spectroscopy and TPSR. Journal of Molecular Catalysis, 55, 43– 54. DOI: 10.1016/0304-5102(89)80241-x.10.1016/0304-5102(89)80241-xSearch in Google Scholar

Lindström, U. M. (2002). Stereoselective organic reactions in water. Chemical Reviews, 102, 2751–2772. DOI: 10.1021/vi F. Rostami-Charati et al./Chemical Papers cr010122p.10.1021/vi F. Rostami-Charati et al./Chemical Papers cr010122pSearch in Google Scholar

Matin, B. M., Mortazavi, Y., Khodadadi, A. A., Abbasi, A., & Firooz, A. A. (2010). Alkaline- and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing. Sensors and Actuators B, 151, 140–145. DOI: 10.1016/j.snb.2010.09.033.10.1016/j.snb.2010.09.033Search in Google Scholar

Mirjafary, Z., Saeidian, H., Sadeghi, A., & Moghaddam, F. M. (2008). ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multicomponent reaction. Catalysis Communications, 9, 299–306. DOI: 10.1016/j.catcom.2007.06.018.10.1016/j.catcom.2007.06.018Search in Google Scholar

Moghaddam, F. M., & Saeidian, H. (2007). Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Materials Science and Engineering: B, 139, 265–269. DOI: 10.1016/j.mseb.2007.03.002.10.1016/j.mseb.2007.03.002Search in Google Scholar

Narayan, S., Muldoon, J., Finn, M. G., Fokin, V. V., Kolb, H. C., & Sharpless, K. B. (2005). “On water”: Unique reactivity of organic compounds in aqueous suspension. Angewandte Chemie International Edition, 44, 3275–3279. DOI: 10.1002/anie.200462883.10.1002/anie.200462883Search in Google Scholar PubMed

Oliveira, S., Belo, D., Santos, I. C., Rabaça, S., & Almeida, M. (2015). Synthesis and characterization of the cyanobenzeneethylenedithio-TTF donor. Beilstein Journal of Organic Chemistry, 11, 951–956. DOI: 10.3762/bjoc.11.106.10.3762/bjoc.11.106Search in Google Scholar PubMed PubMed Central

Pirrung, M. C. (2006). Acceleration of organic reactions through aqueous solvent effects. Chemistry – A European Journal, 12, 1312–1317. DOI: 10.1002/chem.200500959.10.1002/chem.200500959Search in Google Scholar PubMed

Polshettiwar, V., & Varma, R. S. (2008). Microwave-assisted organic synthesis and transformations using benign reaction media. Accounts of Chemical Research, 41, 629–639. DOI: 10.1021/ar700238s.10.1021/ar700238sSearch in Google Scholar PubMed

Rostamizadeh, S., Nojavan, M., Aryan, R., Isapoor, E., & Azad, M. (2013). Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. Journal of Molecular Catalysis A, 374–375, 102–110. DOI: 10.1016/j.molcata.2013.04.002.10.1016/j.molcata.2013.04.002Search in Google Scholar

Sabbaghan, M., Anaraki Firooz, A., & Jan Ahmadi, V. (2012). The effect of template on morphology, optical and photocatalytic properties of ZnO nanostructures. Journal of Molecular Liquids, 175, 135–140. DOI: 10.1016/j.molliq.2012.08.019.10.1016/j.molliq.2012.08.019Search in Google Scholar

Shaterian, H. R., & Mohammadnia, M. (2013). Effective preparation of 2-amino-3-cyano-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene and hydroxyl naphthalene-1,4-dione derivatives under ambient and solvent-free conditions. Journal of Molecular Liquids, 177, 353–360. DOI: 10.1016/j. molliq.2012.10.012.10.1016/j. molliq.2012.10.012Search in Google Scholar

Urgast Hoge, R., Eichhorn, K., & Fischer, K. (1980). 5-Benzamido-2-benzoyl-imino-1,3-dithiol 4-carbonic acid-ethylester, C20H16N2O4S2. Crystal Structure Communications, 9, 615–619.Search in Google Scholar

Received: 2015-10-25
Revised: 2015-12-6
Accepted: 2015-12-16
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0030/html
Scroll to top button