Home Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
Article
Licensed
Unlicensed Requires Authentication

Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety

  • Bo-Ren Yan , Xin-Yang Lv , Huan Du , Man-Ni Gao , Jian Huang and Xiao-Ping Bao EMAIL logo
Published/Copyright: April 21, 2016
Become an author with De Gruyter Brill

Abstract

A series of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety were synthesised and their antimicrobial activities were evaluated. All the target compounds were characterised by 1H NMR, 13C NMR, ESI-MS, IR and elemental analyses. The single crystal structure of 3-((5-((2-fluorobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIi) was also determined. The preliminary bioassays indicated that some of the target compounds possessed good antimicrobial activities. For example, 3-((4-phenyl-5-((4-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIs) exhibited the best inhibitory effect against Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri with the half-effective concentration (EC50) values of 47.6 μg mL−1 and 22.1 μg mL−1, respectively, which were superior to the commercial bactericide, bismerthiazol. Meanwhile, 3-((5-((4-chlorobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIh) exhibited better fungicidal activities against Pellicularia sasakii and Colletotrichum capsici at the concentration of 50 μg mL−1, in comparison with the commercial fungicide, hymexazol.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no.21362003).

References

Asker, F.W., Abbas, S. A. R., Al-Bayati, R. I., & Al-Tamemi, H.A. (2014). Synthesis and biological evaluation of new quinazolinone derivatives. European Journal of Chemistry, 5, 628–634. DOI: 10.5155/eurjchem.5.4.628-634.112010.5155/eurjchem.5.4.628-634.1120Search in Google Scholar

Bartroli, J., Tumo, E., Algueró, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J., & Forn, J. (1998). New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. Journal of Medicinal Chemistry, 41, 1869–1882. DOI: 10.1021/jm9707277.10.1021/jm9707277Search in Google Scholar PubMed

Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y., & Li, R. T. (2005). Synthesis and in vitro antitumor activity of4(3H)-quinazolinone derivatives with dithiocarbamate sidechains. Bioorganic & Medicinal Chemistry Letters, 15, 1915–1917. DOI: 10.1016/j.bmcl.2005.01.083.10.1016/j.bmcl.2005.01.083Search in Google Scholar PubMed

Cao, X. F., Li, F., Hu, M., Lu, W. C., Yu, G. A., & Liu, S. H.(2008). Chiral γ-Aryl-1H-1,2,4-triazole derivatives as highlypotential antifungal agents: Design, synthesis, structure andin vitro fungicidal activities. Journal of Agricultural andFood Chemistry, 56, 11367–11375. DOI: 10.1021/jf8026843.10.1021/jf8026843Search in Google Scholar PubMed

Dixit, R., Mehta, H., & Dixit, B. (2015). Synthesis, characterization and antimicrobial studies of new 2-(2-chloroquinolin-3-yl)-3-(substituted phenyl/pyridinyl) quinazolin-4(3H)-onederivatives using L-proline as a catalyst. Medicinal Chemistry Research, 24, 773–786. DOI: 10.1007/s00044-014-1116-810.1007/s00044-014-1116-8Search in Google Scholar

El-Hashash, M. A., Elshahawi, M. M., Ragab, E. A., & Nagdy, S. (2015). Synthesis and antifungal activity of novelquinazolin-4(3H)-one derivatives. Synthetic Communications,45, 2240–2250. DOI: 10.1080/00397911.2015.1074697.10.1080/00397911.2015.1074697Search in Google Scholar

Gülerman, N. N., Doğan, H. N., Rollas, S., Johansson, C.,& Çelik, C. (2001). Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. II Farmaco, 56, 953–958.DOI: 10.1016/s0014-827x(01)01167-3.10.1016/s0014-827x(01)01167-3Search in Google Scholar PubMed

Hasan, A., Francis, N., Thomas, N. F., & Gapil, S. (2011).Synthesis, characterization and antifungal evaluation of 5-substituted-4-amino-1,2,4-triazole-3-thioesters. Molecules,16, 1297–1309. DOI: 10.3390/molecules16021297.10.3390/molecules16021297Search in Google Scholar PubMed PubMed Central

Holla, B. S., Gonsalves, R., & Shenoy, S. (2000). Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes.European Journal of Medicinal Chemistry, 35, 267–271.DOI: 10.1016/s0223-5234(00)00154-9.10.1016/s0223-5234(00)00154-9Search in Google Scholar PubMed

Jatav, V., Mishra, P., Kashaw, S., & Stables, J. P. (2008). CNS depressant and anticonvulsant activities of some novel 3-[5-substituted-1,3,4-thiadiazole-2-yl]-2-styryl-quinazoline-4(3H)-ones. European Journal of Medicinal Chemistry, 43,1945–1954. DOI: 10.1016/j.ejmech.2007.12.003.10.1016/j.ejmech.2007.12.003Search in Google Scholar PubMed

Liu, F., Luo, X. Q., Song, B. A., Bhadury, P. S., Yang, S., Jin, L. H., Xue, W., & Hu, D. Y. (2008). Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorganic & Medicinal Chemistry, 16, 3632–3640. DOI: 10.1016/j.bmc.2008.02.006.10.1016/j.bmc.2008.02.006Search in Google Scholar PubMed

Liu, J. H., Liu, Y., Jian, J. Y., & Bao, X. P. (2013). Synthesis and fungicidal activities of novel quinazoline derivatives containing 1,2,4-triazole Schiff-base unit. Chinese Journal of Organic Chemistry, 33, 370–374. DOI: 10.6023/cjoc201209023.10.6023/cjoc201209023Search in Google Scholar

Ma, J., Li, P., Li, X. Y., Shi, Q. C., Wan, Z. H., Hu, D. Y., Jin, L. H., & Song, B. A. (2014). Synthesis and antiviral bioactivity of novel 3-((2-((1E,4E)-3-oxo-5-arylpenta-1,4-dien-1-yl)phenoxy)methyl)-4(3H)-quinazolinone derivatives. Journal of Agricultural and Food Chemistry, 62, 8928–8934. DOI: 10.1021/jf502162y.10.1021/jf502162ySearch in Google Scholar PubMed

Mali, J. R., Pratap, U. R., Netankar, P. D., & Mane, R. A. (2009). An efficient synthetic route for quinazolinyl 4-thiazolidinones. Tetrahedron Letters, 50, 5025–5027. DOI: 10.1016/j.tetlet.2009.06.086.10.1016/j.tetlet.2009.06.086Search in Google Scholar

Panneerselvam, P., Rather, B. A., Reddy, D. R. S., & Kumar, N. R. (2009). Synthesis and anti-microbial screening of some Schiff bases of 3-amino-6,8-dibromo-2-phenylquinazolin-4 (3H)-ones. European Journal of Medicinal Chemistry, 44, 2328–2333. DOI: 10.1016/j.ejmech.2008.04.010.10.1016/j.ejmech.2008.04.010Search in Google Scholar PubMed

Patil, B. S., Krishnamurthy, G., Naik, H. S. B., Latthe, P. R., & Ghate, M. (2010). Synthesis, characterization and antimicrobial studies of 2-(4-methoxy-phenyl)-5-methyl-4-(2-arylsulfanyl-ethyl)-2,4-dihydro-[1,2,4]triazolo-3-ones and their corresponding sulfones. European Journal of Medicinal Chemistry, 45, 3329–3334. DOI: 10.1016/j.ejmech.2010.04. 016.10.1016/j.ejmech.2010.04.016Search in Google Scholar PubMed

Plech, T., Wujec, M., Kosikowska, U., & Malm, A. (2013). Synthesis and antibacterial activity of 4,5-disubstituted-1,2,4-triazole-3-thiones. Letters in Drug Design & Discovery, 10, 917–922. DOI: 10.2174/15701808113109990082.10.2174/15701808113109990082Search in Google Scholar

Shi, L. P., Jiang, K. M., Jiang, J. J., Jin, Y., Tao, Y. H., Li, K., Wang, X. H., & Lin, J. (2013). Synthesis and antimicrobial activity of polyhalobenzonitrile quinazolin-4(3H)-one derivatives. Bioorganic & Medicinal Chemistry Letters, 23, 5958–5963. DOI: 10.1016/j.bmcl.2013.08.068.10.1016/j.bmcl.2013.08.068Search in Google Scholar PubMed

Shin, K. J., Koo, K. D., Yoo, K. H., Kang, Y. K., Park, S.W., & Kim, D. J. (2001). Synthesis and biological properties of new 1-β-methylcarbapenems containing heteroaromatic thioether moiety. Bioorganic & Medicinal Chemistry Letters, 11, 2397– 2399. DOI: 10.1016/s0960-894x(01)00451-6.10.1016/s0960-894x(01)00451-6Search in Google Scholar PubMed

Sun, J., Li, D. D., Li, J. R., Fang, F., Du, Q. R., Qian, Y., & Zhu, H. L. (2013). Design, synthesis, biological evaluation and molecular modeling study of 4-alkoxyquinazoline derivatives as potential VEGFR2 kinase inhibitors. Organic & Biomolecular Chemistry, 11, 7676–7686. DOI: 10.1039/c3ob41136b.10.1039/c3ob41136bSearch in Google Scholar PubMed

Turan-Zitouni, G., Kaplancikli, Z. A., Yildiz, M. T., Chevallet, P., & Kaya, D. (2005). Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. European Journal of Medicinal Chemistry, 40, 607–613. DOI: 10.1016/j.ejmech.2005.01.007.10.1016/j.ejmech.2005.01.007Search in Google Scholar PubMed

Wang, X., Li, P., Li, Z. N., Yin, J. A., He, M., Xue, W., Chen, Z. W., & Song, B. A. (2013). Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(ptrifluoromethoxy) anilino]-4(3H)-quinazolinone moiety. Journal of Agricultural and Food Chemistry, 61, 9575–9582. DOI: 10.1021/jf403193q.10.1021/jf403193qSearch in Google Scholar PubMed

Xu, W. M., Han, F. F., He, M., Hu, D. Y., He, J., Yang, S., & Song, B. A. (2012). Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. Journal of Agricultural and Food Chemistry, 60, 1036– 1041. DOI: 10.1021/jf203772d10.1021/jf203772dSearch in Google Scholar PubMed

Zhang, F., Wen, Q., Wang, S. F., Karim, B. S., Yang, Y. S., Liu, J. J., Zhang, W. M., & Zhu, H. L. (2014). Design, synthesis and antibacterial activities of 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives containing Schiff base formation as FabH inhibitory. Bioorganic & Medicinal Chemistry Letters, 24, 90–95. DOI: 10.1016/j.bmcl.2013.11.079.10.1016/j.bmcl.2013.11.079Search in Google Scholar PubMed

Zhu, S. R., Wang, J., Chandrashekar, G., Smith, E., Liu, X. J., & Zhang, Y. S. (2010). Synthesis and evaluation of 4-quinazolinone compounds as potential antimalarial agents. European Journal of Medicinal Chemistry, 45, 3864–3869. DOI: 10.1016/j.ejmech.2010.05.040.10.1016/j.ejmech.2010.05.040Search in Google Scholar PubMed PubMed Central

Received: 2015-7-7
Revised: 2015-12-10
Accepted: 2016-1-8
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0034/html
Scroll to top button