Home Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
Article
Licensed
Unlicensed Requires Authentication

Effect of titanium source on structural properties and acidity of Ti-pillared bentonite

  • Funda Turgut Basoglu EMAIL logo
Published/Copyright: April 21, 2016
Become an author with De Gruyter Brill

Abstract

Ti-pillared bentonites (Ti-PBs) were synthesised using bentonite from the Hançılı region in Turkey. Ti(IV) chloride, Ti(IV) ethoxide and Ti(IV) propoxide were used as the titanium sources; the syntheses were carried out using different H+/Ti ratios, bentonite suspension percentages and calcination temperatures. Titanium was found in the form of titanium dioxide for all the sources. The Ti(IV) chloride source afforded a sample with a significantly higher specific BET surface area (by 323 m2 g−1), TiO2 content of 50.5 mass % and a more microporous structure with a micropore volume of 0.112 cm3 g−1; the Ti(IV) propoxide source afforded a more mesoporous structure with a higher total pore volume. The micropore region showed the formation of pores of different sizes, while prominent narrow peaks were obtained in the mesopore region. Ti-PBs, which exhibited only the anatase phase of titanium dioxide, yielded high Bronsted and Lewis acidities. When the rutile phase and the anatase phase occurred together, as a result of the lower TiO2 content, the Bronsted and Lewis acidities of the Ti-PBs decreased. The use of Ti(IV) chloride and Ti(IV) propoxide sources at H+/Ti ratios of 4.0 and a bentonite suspension percentage of 2.0 resulted in samples exhibiting strong Brønsted acidity.

Acknowledgements

The author wishes to acknowledge the financial support received from the Scientific Research Projects Department of Gazi University, Turkey under project no. 06/2009-49.

References

Adams, J. M., & McCabe, R. W. (2011). Clay minerals as catalyst. In: F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp. 541–581). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/s1572-4352(05)01017-2.10.1016/s1572-4352(05)01017-2Search in Google Scholar

Arfaoui, J., Boudali, L. K., & Ghorbel, A. (2006). Vanadiadoped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol. Catalysis Communications, 7, 86–90. DOI: 10.1016/j.catcom.2005.09.003.10.1016/j.catcom.2005.09.003Search in Google Scholar

Arfaoui, J., Boudali, L. K., Ghorbel, A., & Delahay, G. (2008). Influence of the nature of titanium source and of vanadia content on the properties of titanium-pillared montmorillonite. Journal of Physics and Chemistry of Solids, 69, 1121–1124. DOI: 10.1016/j.jpcs.2007.10.045.10.1016/j.jpcs.2007.10.045Search in Google Scholar

Arfaoui, J., Boudali, L. K., & Ghorbel, A. (2010). Catalytic epoxidation of allylic alcohol (E)-2-hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading. Applied Clay Science, 48, 171–178. DOI: 10.1016/j.clay.2009.12.005.10.1016/j.clay.2009.12.005Search in Google Scholar

Balci, S., & Tecimer, A. (2015). Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source. Applied Surface Science, 330, 455–464. DOI: 10.1016/j.apsusc.2014.12.160.10.1016/j.apsusc.2014.12.160Search in Google Scholar

Basoglu, F. T., & Balci, S. (2010). Micro-mesopore analysis of Cu2+ and Ag+ containing Al-pillared bentonite. Applied Clay Science, 50, 73–80. DOI: 10.1016/j.clay.2010.07.004.10.1016/j.clay.2010.07.004Search in Google Scholar

Bergaya, F., Aouad, A., & Mandalia, T. (2011). Pillared clays and clay minerals. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Development in clay science: Handbook of clay science (pp. 393–421). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/s1572-4352(05)01012-3.10.1016/s1572-4352(05)01012-3Search in Google Scholar

Bineesh, K.V., Cho, D. R., Kim, S. Y., Jermy, B. R.,& Park, D. W. (2008). Vanadia-doped titania-pillared montmorillonite clay for the selective catalytic oxidation of H2S. Catalysis Communications, 9, 2040–2043. DOI: 10.1016/j.catcom. 2008.03.048.10.1016/j.catcom. 2008.03.048Search in Google Scholar

Bineesh, K. V., Kim, D. K., Kim, M. I., & Park, D. W. (2011). Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Applied Clay Science, 53, 204–211. DOI: 10.1016/j.clay.2010.12.022.10.1016/j.clay.2010.12.022Search in Google Scholar

Boudali, L. K., Ghorbel, A., Tichit, D., Chiche, B., Dutartre, R., & Figueras, F. (1994). Synthesis and characterization of titanium-pillared montmorillonites. Microporous Materials, 2, 537–541. DOI: 10.1016/0927-6513(93)e0068-r.10.1016/0927-6513(93)e0068-rSearch in Google Scholar

Boudali, L. K., Ghorbel, A., Figueras, F., & Pinel, C. (2000). Characterization and catalytic properties of titanium pillared clays in the epoxidation of allylic alcohols. Studies in Surface Science and Catalysis, 130, 1643–1648. DOI: 10.1016/s0167-2991(00)80436-x.10.1016/s0167-2991(00)80436-xSearch in Google Scholar

Boudali, L. K., Ghorbel, A., & Grange, P. (2009). Characterization and reactivity of WO3–V2O5 supported on sulfated titanium pillared clay catalysts for the SCRNO reaction. Comptes Rendus Chimie, 12, 779–786. DOI: 10.1016/j.crci.2008.11.005.10.1016/j.crci.2008.11.005Search in Google Scholar

Carriazo, J. G., Moreno-Forero, M., Molina, R. A., & Moreno, S. (2010). Incorporation of titanium–titanium iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50, 401–408. DOI: 10.1016/j.clay.2010.09.007.10.1016/j.clay.2010.09.007Search in Google Scholar

Chmielarz, L., Gil, B., Ku´strowski, P., Piwowarska, Z., Dudek, B., & Michalik, M. (2009). Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars – synthesis and characterization. Journal of Solid State Chemistry, 182, 1094–1104. DOI: 10.1016/j.jssc. 2009.02.017.10.1016/j.jssc. 2009.02.017Search in Google Scholar

Chmielarz, L., Kowalczyk, A., Wojciechowska, M., Boro´n, P., Dudek, B., & Michalik, M. (2014). Montmorillonite intercalated with SiO2, SiO2–Al2O3 or SiO2–TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chemical Papers, 68, 1219–1227. DOI: 10.2478/s11696-013-0463-0.10.2478/s11696-013-0463-0Search in Google Scholar

Dali, A., Rekkab-Hammoumraoui, I., Choukchou-Braham, A., & Bachir, R. (2015). Allylic oxidation of cyclohexene over F. T. Basoglu/Chemical Papers xiii ruthenium-doped titanium-pillared clay. RSC Advances, 5, 29167–29178. DOI: 10.1039/c4ra17129b.10.1039/c4ra17129bSearch in Google Scholar

Damardji, B., Khalaf, H., Duclaux, L., & David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst. Part I. Microwave calcination, characterization and adsorption of a textile azo dye. Applied Clay Science, 44, 201–205. DOI: 10.1016/j.clay.2008.12.010.10.1016/j.clay.2008.12.010Search in Google Scholar

Del Castillo, H. L., & Grange, P. (1993). Preparation and catalytic activity of titanium pillared montmorillonite. Applied Catalysis A, 103, 23–34. DOI: 10.1016/0926-860x(93)85170-t.10.1016/0926-860x(93)85170-tSearch in Google Scholar

Del Castillo, H. L., Gil, A., & Grange, P. (1997). Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites. Journal of Physics and Chemistry of Solids, 58, 1053–1062. DOI: 10.1016/s0022-3697(97)00006-1.10.1016/s0022-3697(97)00006-1Search in Google Scholar

Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48, 53–229. DOI: 10.1016/s0167-5729(02)00100-0.10.1016/s0167-5729(02)00100-0Search in Google Scholar

Ding, Z., Kloprogge, J. T., Frost, R. L., Lu, G. Q., & Zhu, H. Y. (2001). Porous clays and pillared clays-based catalysts. Part 2. A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8, 273–293. DOI: 10.1023/a:1013113030912.10.1023/a:1013113030912Search in Google Scholar

Farfan-Torres, E. M., Sham, E., & Grange, P. (1992). Pillared clays: Preparation and characterization of zirconium pillared montmorillonite. Catalysis Today, 15, 515–526. DOI: 10.1016/0920-5861(92)85016-f.10.1016/0920-5861(92)85016-fSearch in Google Scholar

Fechete, I., Wang, Y., & V´edrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189, 2–27. DOI: 10.1016/j.cattod.2012.04.003.10.1016/j.cattod.2012.04.003Search in Google Scholar

Gil, A., Korili, S. A., & Vicente, M. A. (2008). Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catalysis Reviews, 50, 153–221. DOI: 10.1080/01614940802019383.10.1080/01614940802019383Search in Google Scholar

Gil, A., Korili, S. A., Trujillano, R., & Vicente, M. A. (2011). A review on characterization of pillared clays by specific techniques. Applied Clay Science, 53, 97–105. DOI: 10.1016/j.clay.2010.09.018.10.1016/j.clay.2010.09.018Search in Google Scholar

Huang, Q. Q., Zuo, S. F., & Zhou, R. X. (2010). Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogencontaining VOCs. Applied Catalysis B, 95, 327–334. DOI: 10.1016/j.apcatb.2010.01.011.10.1016/j.apcatb.2010.01.011Search in Google Scholar

Jagtap, N., & Ramaswamy, V. (2006). Oxidation of aniline over titania pillared montmorillonite clays. Applied Clay Science, 33, 89–98. DOI: 10.1016/j.clay.2006.04.001.10.1016/j.clay.2006.04.001Search in Google Scholar

Kloprogge, J. T. (1998). Synthesis of smectites and porous pillared clay catalysts: A review. Journal of Porous Materials, 5, 5–41. DOI: 10.1023/a:1009625913781.10.1023/a:1009625913781Search in Google Scholar

Lambert, J. F., & Poncelet, G. (1997). Acidity in pillared clays: Origin and catalytic manifestations. Topics in Catalysis, 4, 43–56. DOI: 10.1023/a:1019175803068.10.1023/a:1019175803068Search in Google Scholar

Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2004). Characterization of porous solids and powders: Surface area, pore size and density. Dordrecht, The Netherlands, Kluwer. DOI: 10.1007/978-1-4020-2303-3.10.1007/978-1-4020-2303-3Search in Google Scholar

Ooka, C., Yoshida, H., Suzuki, K., & Hattori, T. (2004). Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143–150. DOI: 10.1016/j.micromeso. 2003.10.011.10.1016/j.micromeso. 2003.10.011Search in Google Scholar

Rauquerol, F., Rauquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. London, UK: Academic Press.Search in Google Scholar

Shen, B. X., Ma, H. Q., & Yao, Y. (2012). Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. Journal of Environmental Sciences, 24, 499–506. DOI: 10.1016/s1001-0742(11)60756-0.10.1016/s1001-0742(11)60756-0Search in Google Scholar

Sterte, J. (1986). Synthesis and properties of titanium-oxide cross-linked montmorillonite. Clays and Clay Minerals, 34, 658–664. DOI: 10.1346/ccmn.1986.0340606.10.1346/ccmn.1986.0340606Search in Google Scholar

Tomul, F., & Balci, S. (2009). Characterization of Al, Crpillared clays and CO oxidation. Applied Clay Science, 43, 13–20. DOI: 10.1016/j.clay.2008.07.006.10.1016/j.clay.2008.07.006Search in Google Scholar

Tomul, F. (2011). Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Applied Surface Science, 258, 1836–1848. DOI: 10.1016/j.apsusc.2011.10.056.10.1016/j.apsusc.2011.10.056Search in Google Scholar

Tomul, F. (2012). Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Crpillared bentonites. Journal of Nanomaterials, 2012, 1–14. DOI: 10.1155/2012/237853.10.1155/2012/237853Search in Google Scholar

Valverde, J. L., S´anchez, P., Dorado, F., Asencio, I., & Romero, A. (2003). Preparation and characterization of Tipillared clays using Ti alkoxides. Influence of the synthesis parameters. Clays and Clay Minerals, 51, 41–51. DOI: 10.1346/ccmn.2003.510105.10.1346/ccmn.2003.510105Search in Google Scholar

Yang, R. T., Chen, J. P., Kikkinides, E. S., Cheng, L. S., & Cichanowicz, J. E. (1992). Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia. Industrial & Engineering Chemistry Research, 31, 1440– 1445. DOI: 10.1021/ie00006a00310.1021/ie00006a003Search in Google Scholar

Yang, S. S., Huang, Q. Q., & Zhou, R. X. (2014). Influence of interactions between chromium and cerium on catalytic performances of CrOx–CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine. Chinese Science Bulletin, 59, 3987– 3992. DOI: 10.1007/s11434-014-0531-z.10.1007/s11434-014-0531-zSearch in Google Scholar

Zhang, J. X., Zhang, S. L., Cai, W., & Zhong, Q. (2013). The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 268, 535–540. DOI: 10.1016/j.apsusc.2012.12.169.10.1016/j.apsusc.2012.12.169Search in Google Scholar

Zhou, J. B., Wu, P. X., Dang, Z., Zhu, N. W., Li, P., Wu, J. H., & Wang, X. D. (2010). Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions. Chemical Engineering Journal, 162, 1035–1044. DOI: 10.1016/j.cej.2010.07.016.10.1016/j.cej.2010.07.016Search in Google Scholar

Received: 2015-6-8
Revised: 2015-10-26
Accepted: 2015-11-26
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0026/html
Scroll to top button