Abstract
The effect of platinum loading (0.09–1.00 mass %) on the performance of ceria–zirconia supported catalysts in the total oxidation of ethanol and toluene in air was investigated. The introduction of platinum promoted the reduction of surface cerium and decreased the acidity of the catalysts. In ethanol oxidation, the temperature of 50 % conversion decreased with increasing platinum content. This increase in catalytic performance was more pronounced for the catalysts with 0.59 mass % and 1.00 mass % Pt. On the other hand, higher amount of by-products (mainly acetaldehyde) was observed at increased platinum loadings. For all catalysts, a correlation between their H2-TPR profiles and catalytic performance was revealed. In toluene oxidation, only the catalysts with 0.59 mass % and 1.00 mass % Pt exhibited a lower temperature of 50 % conversion than pristine ceria–zirconia. The effect of platinum loading was less pronounced than in ethanol oxidation and a correlation between reduction behaviour and catalytic performance was not observed. The superior catalytic performance of the catalysts with 0.59 mass % and 1.00 mass % of Pt in both ethanol and toluene oxidation was ascribed to the presence of large platinum nanoparticles, which were not observed at lower Pt loadings.
Acknowledgements
The financial support received from the Grant Agency of the Czech Republic (project no. 13-24186P) is gratefully acknowledged. The authors wish to thank Prof. J. Barbier Jr. from the University of Poitiers for the TEM images, Dr. A. Kallistová from the Institute of Geology CAS, Prague for XRD analysis and Dr. K. Jirátová from ICPF Prague for the TPR and TPD measurements.
References
Andreeva, D., Nedyalkova, R., Ilieva, L., & Abrashev, M. V. (2003). Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Applied Catalysis A: General, 246, 29–38. DOI: 10.1016/s0926-860x(02)00666-x.10.1016/s0926-860x(02)00666-xSearch in Google Scholar
Avgouropoulos, G., Oikonomopoulos, E., Kanistras, D., & Ioannides, T. (2006). Complete oxidation of ethanol over alkalipromoted Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 65, 62–69. DOI: 10.1016/j.apcatb.2005.12.016.10.1016/j.apcatb.2005.12.016Search in Google Scholar
Avila, M. S., Vignatti, C. I., Apesteguía, C. R., & Garetto, T. F. (2014). Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chemical Engineering Journal, 241, 52–59. DOI: 10.1016/j.cej.2013.12.006.10.1016/j.cej.2013.12.006Search in Google Scholar
Balducci, G., Kašpar, J., Fornasiero, P., Graziani, M., Islam, M. S., & Gale, J. D. (1997). Computer simulation studies of bulk reduction and oxygen migration in CeO2−ZrO2 solid solutions. The Journal of Physical Chemistry B, 101, 1750– 1753. DOI: 10.1021/jp962530g.10.1021/jp962530gSearch in Google Scholar
Balducci, G., Kašpar, J., Fornasiero, P., Graziani, M., & Islam, M. S. (1998). Surface and reduction energetics of the CeO2−ZrO2 catalysts. The Journal of Physical Chemistry B, 102, 557–561. DOI: 10.1021/jp972400n.10.1021/jp972400nSearch in Google Scholar
Barresi, A. A., & Baldi, G. (1993). Mixture effects in deep catalytic oxidation of ethanol over platinum. Influence of benzene and ethenylbenzene on rate and selectivity. Chemical Engineering Communications, 123, 31–42. DOI: 10.1080/00986449308936163.10.1080/00986449308936163Search in Google Scholar
Benard, S., Retailleau, L., Gaillard, F., Vernoux, P., & Giroir-Fendler, A. (2005). Supported platinum catalysts for nitrogen oxide sensors. Applied Catalysis B: Environmental, 55, 11– 21. DOI: 10.1016/j.apcatb.2004.07.005.10.1016/j.apcatb.2004.07.005Search in Google Scholar
Boaro, M., Trovarelli, A., Hwang, J. H., & Mason, T. O. (2002). Electrical and oxygen storage/release properties of nanocrystalline ceria–zirconia solid solutions. Solid State Ionics, 147, 85–95. DOI: 10.1016/s0167-2738(02)00004-8.10.1016/s0167-2738(02)00004-8Search in Google Scholar
de Rivas, B., López-Fonseca, R., Sampedro, C., & Gutiérrez-Ortiz, J. I. (2009). Catalytic behaviour of thermally aged Ce/Zr mixed oxides for the purification of chlorinated VOCcontaining gas streams. Applied Catalysis B: Environmental, 90, 545–555. DOI: 10.1016/j.apcatb.2009.04.017.10.1016/j.apcatb.2009.04.017Search in Google Scholar
de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. Á., & Gutiérrez-Ortiz, J. I. (2011a). Structural characterisation of Ce0.5Zr0.5O2 modified by redox treatments and evaluation for chlorinated VOC oxidation. Applied Catalysis B: Environmental, 101, 317–325. DOI: 10.1016/j.apcatb.2010.09.034.10.1016/j.apcatb.2010.09.034Search in Google Scholar
de Rivas, B., López-Fonseca, R., Gutiérrez-Ortiz, M. A., & Gutiérrez-Ortiz, J. I. (2011b). Impact of induced chlorinepoisoning on the catalytic behaviour of Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2 in the gas-phase oxidation of chlorinated VOCs. Applied Catalysis B: Environmental, 104, 373–381. DOI: 10.1016/j.apcatb.2011.03.003.10.1016/j.apcatb.2011.03.003Search in Google Scholar
Del Angel, G., Padilla, J. M., Cuauhtemoc, I., & Navarrete, J. (2008). Toluene combustion on γ-Al2O3–CeO2 catalysts prepared from boehmite and cerium nitrate. Journal of Molecular Catalysis A-Chemical, 281, 173–178. DOI: 10.1016/j.molcata.2007.08.017.10.1016/j.molcata.2007.08.017Search in Google Scholar
Denton, P., Giroir-Fendler, A., Praliaud, H., & Primet, M. (2001). State of Pt/SiO2 catalysts after reaction with a lean NO-C3H6-O2 mixture. Topics in Catalysis, 16–17, 377–380. DOI: 10.1023/a:1016625519307.10.1023/a:1016625519307Search in Google Scholar
Derwent, R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., Simmonds, P. G., Passant, N. R., Dollard, G. J., Dumitrean, P., & Kent, A. (2003). Photochemical ozone formation in north west Europe and its control. Atmospheric Environment, 37, 1983–1991. DOI: 10.1016/s1352-2310(03)00031-1.10.1016/s1352-2310(03)00031-1Search in Google Scholar
Gaálová, J., Topka, P., Kaluža, L., & Šolcová, O. (2011). Gold versus platinum on ceria–zirconia mixed oxides in oxidation of ethanol and toluene. Catalysis Today, 175, 231–237. DOI: 10.1016/j.cattod.2011.05.011.10.1016/j.cattod.2011.05.011Search in Google Scholar
Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H., & Keutsch, F. N. (2009).Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmospheric Chemistry and Physics, 9, 3331–3345. DOI: 10.5194/acp-9-3331-2009.10.5194/acp-9-3331-2009Search in Google Scholar
Gatica, J. M., Baker, R. T., Fornasiero, P., Bernal, S., Blanco, G., & Kašpar, J. (2000). Rhodium dispersion in a Rh/Ce0.68Zr0.32O2 catalyst investigated by HRTEM and H2 chemisorption. Journal of Physical Chemistry B, 104, 4667– 4672. DOI: 10.1021/jp994101z.10.1021/jp994101zSearch in Google Scholar
Gatica, J. M., Baker, R. T., Fornasiero, P., Bernal, S., & Kašpar, J. (2001). Characterization of the metal phase in NM/Ce0.68Zr0.32O2 (NM: Pt and Pd) catalysts by hydrogen chemisorption and HRTEM microscopy: A comparative study. Journal of Physical Chemistry B, 105, 1191–1199. DOI: 10.1021/jp003632g.10.1021/jp003632gSearch in Google Scholar
Gluhoi, A. C., & Nieuwenhuys, B. E. (2007). Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts: Effect of various promoters. Catalysis Today, 119, 305–310. DOI: 10.1016/j.cattod.2006.08.034.10.1016/j.cattod.2006.08.034Search in Google Scholar
Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity. New York, NY, USA: Academic Press.Search in Google Scholar
Gutiérrez-Ortiz, J. I., de Rivas, B., López-Fonseca, R., & González-Velasco, J. R. (2004). Combustion of aliphatic C2 chlorohydrocarbons over ceria–zirconia mixed oxides catalysts. Applied Catalysis A: General, 269, 147–155. DOI: 10.1016/j.apcata.2004.04.014.10.1016/j.apcata.2004.04.014Search in Google Scholar
Gutiérrez-Ortiz, J. I., de Rivas, B., López-Fonseca, R., & González-Velasco, J. R. (2006). Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions. Applied Catalysis B-Environmental, 65, 191–200. DOI: 10.1016/j.apcatb.2006.02.001.10.1016/j.apcatb.2006.02.001Search in Google Scholar
Chen, C. Y., Chen, F., Zhang, L., Pan, S. X., Bian, C. Q., Zheng, X. M., Meng, X. J., & Xiao, F. S. (2015). Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chemical Communications, 51, 5936– 5938. DOI: 10.1039/c4cc09383f.10.1039/c4cc09383fSearch in Google Scholar
Kašpar, J., Fornasiero, P., & Graziani, M. (1999). Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 50, 285–298. DOI: 10.1016/s0920-5861(98)00510-0.10.1016/s0920-5861(98)00510-0Search in Google Scholar
Khan, F. I., & Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527–545. DOI: 10.1016/s0950-4230(00)00007-3.10.1016/s0950-4230(00)00007-3Search in Google Scholar
Lan, L., Chen, S., Cao, Y., Zhao, M., Gong, M., & Chen, Y. (2015). Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. Journal of Colloid and Interface Science, 450, 404–416. DOI: 10.1016/j.jcis.2015.03.042.10.1016/j.jcis.2015.03.042Search in Google Scholar
Larsson, P. O., & Andersson, A. (2000). Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol. Applied Catalysis B-Environmental, 24, 175–192. DOI: 10.1016/s0926-3373(99)00104-6.10.1016/s0926-3373(99)00104-6Search in Google Scholar
Lecloux, A., & Pirard, J. P. (1979). Importance of standard isotherms in the analysis of adsorption-isotherms for determining the porous texture of solids. Journal of Colloid and Interface Science, 70, 265–281. DOI: 10.1016/0021-9797(79)90031-6.10.1016/0021-9797(79)90031-6Search in Google Scholar
Liotta, L. F., Macaluso, A., Longo, A., Pantaleo, G., Martorana, A., & Deganello, G. (2003). Effects of redox treatments on structural composition of a ceria–zirconia oxide for application in the three-way catalysis. Applied Catalysis A: General, 240, 295–307. DOI: 10.1016/s0926-860x(02)00460-x.10.1016/s0926-860x(02)00460-xSearch in Google Scholar
Liotta, L. F., Longo, A., Pantaleo, G., Di Carlo, G., Martorana, A., Cimino, S., Russo, G., & Deganello, G. (2009). Alumina supported Pt(1%)/Ce0.6Zr0.4O2 monolith: Remarkable stabilization of ceria–zirconia solution towards CeAlO3 formation operated by Pt under redox conditions. Applied Catalysis B: Environmental, 90, 470–477. DOI: 10.1016/j.apcatb.2009.04.007.10.1016/j.apcatb.2009.04.007Search in Google Scholar
Liu, H., Ma, L., Shao, S., Li, Z., Wang, A., Huang, Y., & Zhang, T. (2007). Preferential CO oxidation on Ce-promoted Pt/γ-Al2O3 catalysts under H2-rich atmosphere. Chinese Journal of Catalysis, 28, 1077–1082. DOI: 10.1016/s1872-2067(08)60008-x.10.1016/s1872-2067(08)60008-xSearch in Google Scholar
Matějová, L., Topka, P., Kaluža, L., Pitkäaho, S., Ojala, S., Gaálová, J., & Keiski, R. L. (2013). Total oxidation of dichloromethane and ethanol over ceria–zirconia mixed oxide supported platinum and gold catalysts. Applied Catalysis B-Environmental, 142–143, 54–64. DOI: 10.1016/j.apcatb.2013.04.069.10.1016/j.apcatb.2013.04.069Search in Google Scholar
Mattos, L. V., & Noronha, F. B. (2005). The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol. Journal of Power Sources, 152, 50–59. DOI: 10.1016/j.jpowsour.2004. 12.052.10.1016/j.jpowsour.2004. 12.052Search in Google Scholar
Mikulová, J., Barbier, J., Jr., Rossignol, S., Mesnard, D., Duprez, D., & Kappenstein, C. (2007). Wet air oxidation of acetic acid over platinum catalysts supported on ceriumbased materials: Influence of metal and oxide crystallite size. Journal of Catalysis, 251, 172–181. DOI: 10.1016/j.jcat.2007. 07.008.10.1016/j.jcat.2007. 07.008Search in Google Scholar
Montini, T., Speghini, A., De Rogatis, L., Lorenzut, B., Bettinelli, M., Graziani, M., & Fornasiero, P. (2009). Identification of the structural phases of CexZr1−xO2 by Eu(III) luminescence studies. Journal of the American Chemical Society, 131, 13155–13160. DOI: 10.1021/ja905158p.10.1021/ja905158pSearch in Google Scholar
Patterson, M. J., Angove, D. E., Cant, N. W., & Nelson, P. F. (1999). The formation of benzene and chlorobenzene during the oxidation of toluene over rhodium-based catalysts. Applied Catalysis B: Environmental, 20, 123–131. DOI: 10.1016/s0926-3373(98)00099-x.10.1016/s0926-3373(98)00099-xSearch in Google Scholar
Petkovic, L. M., Rashkeev, S. N., & Ginosar, D. M. (2009). Ethanol oxidation on metal oxide-supported platinum catalysts. Catalysis Today, 147, 107–114. DOI: 10.1016/j.cattod. 2009.02.015.10.1016/j.cattod. 2009.02.015Search in Google Scholar
Radic, N., Grbic, B., & Terlecki-Baricevic, A. (2004). Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: Platinum crystallite size effect. Applied Catalysis BEnvironmental, 50, 153–159. DOI: 10.1016/j.apcatb.2004.01. 011.10.1016/j.apcatb.2004.01. 011Search in Google Scholar
Santos, V. P., Carabineiro, S. A. C., Tavares, P. B., Pereira, M. F. R., Órfão, J. J. M., & Figueiredo, J. L. (2010). Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 99, 198–205. DOI: 10.1016/j.apcatb.2010.06.020.10.1016/j.apcatb.2010.06.020Search in Google Scholar
Saqer, S. M., Kondarides, D. I., & Verykios, X. E. (2009). Catalytic activity of supported platinum and metal oxide catalysts for toluene oxidation. Topics in Catalysis, 52, 517–527. DOI: 10.1007/s11244-009-9182-8.10.1007/s11244-009-9182-8Search in Google Scholar
Spivey, J. J. (1987). Complete catalytic-oxidation of volatile organics. Industrial & Engineering Chemistry Research, 26, 2165–2180. DOI: 10.1021/ie00071a001.10.1021/ie00071a001Search in Google Scholar
Stark, W. J., Grunwaldt, J. D., Maciejewski, M., Pratsinis, S. E., & Baiker, A. (2005). Flame-made Pt/ceria/zirconia for low-temperature oxygen exchange. Chemistry of Materials, 17, 3352–3358. DOI: 10.1021/cm050538+.10.1021/cm050538+Search in Google Scholar
Topka, P., Delaigle, R., Kaluža, L., & Gaigneaux, E. M. (2015). Performance of platinum and gold catalysts supported on ceria–zirconia mixed oxide in the oxidation of chlorobenzene. Catalysis Today, 253, 172–177. DOI: 10.1016/j.cattod.2015.02.032.10.1016/j.cattod.2015.02.032Search in Google Scholar
Yao, M. H., Baird, R. J., Kunz, F. W., & Hoost, T. E. (1997). An XRD and TEM investigation of the structure of aluminasupported ceria-zirconia. Journal of Catalysis, 166, 67–74. DOI: 10.1006/jcat.1997.1504.10.1006/jcat.1997.1504Search in Google Scholar
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Original Paper
- Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
- Original Paper
- Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
- Original Paper
- Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
- Original Paper
- Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
- Original Paper
- ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
- Original Paper
- Cr(VI) ion removal from artificial waste water using supported liquid membrane
- Original Paper
- Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
- Original Paper
- Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
- Original Paper
- Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
- Original Paper
- Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
- Original Paper
- Synthesis of 1-fluoro-substituted codeine derivatives
- Original Paper
- Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
- Original Paper
- Importance of inter-residue interactions in ligand—receptor binding
Articles in the same Issue
- Original Paper
- Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
- Original Paper
- Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
- Original Paper
- Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
- Original Paper
- Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
- Original Paper
- ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
- Original Paper
- Cr(VI) ion removal from artificial waste water using supported liquid membrane
- Original Paper
- Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
- Original Paper
- Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
- Original Paper
- Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
- Original Paper
- Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
- Original Paper
- Synthesis of 1-fluoro-substituted codeine derivatives
- Original Paper
- Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
- Original Paper
- Importance of inter-residue interactions in ligand—receptor binding