Startseite Synthesis of 1-fluoro-substituted codeine derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of 1-fluoro-substituted codeine derivatives

  • Sándor Hosztafi EMAIL logo und János Marton
Veröffentlicht/Copyright: 21. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Syntheses of new N-demethyl-N-substituted analogues (propyl, allyl) of 1-fluorocodeine and their 7,8-dihydro derivatives were described starting from codeine. 1-Fluoronorcodeine and 1-fluorodihydronorcodeine were prepared by N-demethylation with α-chloroethyl chloroformate from the corresponding 6-O-acetyl protected derivatives. 3-O-Demethylation of 1-fluorocodeine and 1-fluorodihydrocodeine with boron tribromide resulted in 1-fluoromorphine and 1-fluorodihydromorphine respectively. 1-Fluorodihydromorphine was acetylated to 3,6-di-O-acetyl-1-fluorodihydromorphine. 8-Fluoroapocodeine and N-propyl-8-fluoroapocodeine were synthesized from the appropriate 1-fluorocodeine derivatives by acid-catalyzed rearrangement.

References

Bentley, K.W. (1954). The chemistry of the morphine alkaloids. Oxford, UK: Clarendon PressSuche in Google Scholar

Berényi, S., Hosztafi, S., & Makleit, S. (1992). A new efficient method for the preparation of 2-fluoro-N-propylnorapomorphine. Journal of the Chemical Society, Perkin Transactions 1, 1992, 2693–2694. DOI: 10.1039/p19920002693.10.1039/p19920002693Suche in Google Scholar

Bognar, R., & Gaál, G. (1960). ¨Uber die Nitro-AbkÖmmlingedes Morphins und Kodeins. Izvestija Chimicheski Institut Bulgarska Akademija na Naukite (Sofia), 7, 399–410. (in German)Suche in Google Scholar

Bognar, R., & Gaál, G. (1963). Nitroderivatives of morphine and codeine. Magyar Kémiai Folyóirat, 69, 17–22.Suche in Google Scholar

Bognar, R., & Gaál, G. (1964). ¨Uber die Struktur des sogenannten“α-nitrokodeins”. Acta Chimica Academiae Scientiarum Hungaricae, 69, 17–22. (in German)Suche in Google Scholar

Böhm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U., & Stahl, M. (2004). Fluorinein medicinal chemistry. ChemBioChem, 5, 637–643. DOI:10.1002/cbic.200301023.10.1002/cbic.200301023Suche in Google Scholar PubMed

Braenden, O. J., Eddy, N. B., & Halbach, H. (1955). Syntheticsubstances with morphine-like effect. Relationship betweenchemical structure and analgesic action. Bulletin of the World Health Organization, 13, 937–998.Suche in Google Scholar

Cankař, P., Popa, I., Travniček, Z., Styskala, J., Hradil, P., & Slouka, J. (2013). Synthesis of 1-aminocodeine as a synthonfor other codeine derivatives. European Journal of Organic Chemistry, 27, 6062–6068. DOI:10.1002/ejoc.201300701.10.1002/ejoc.201300701Suche in Google Scholar

Coenen, H. H., Elsinga, P. H., Iwata, R., Kilbourn, M.R., Pillai, M. R. A., Rajan, M. G. R., Wagner, H. N.,& Zaknun, J. J. (2010). Fluorine-18 radio pharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nuclear Medicine and Biology, 37, 727–740. DOI:10.1016/j.nucmedbio.2010.04.185.10.1016/j.nucmedbio.2010.04.185Suche in Google Scholar PubMed

Davies, S. G., Goodwin, C. J., Pyatt, D., & Smith, A. D. (2001). Palladium catalysed elaboration of codeine and morphine. Journal of the Chemical Society, Perkin Transactions 1, 2001, 1413–1420. DOI: 10.1039/b102581n.10.1039/b102581nSuche in Google Scholar

Gaál, G., & Bognar, R. (1963). On the derivatives of 1- and 2-nitro-codeine. Magyar Kémiai Folyóirat, 69, 23–26.Suche in Google Scholar

Filer, C. N. (2008). U. S. Patent No. 7,323,566. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Filer, C. N. (2013). Morphinan alkaloids labeled with tritium: Synthesis and applications. Journal of Labelled Compdounds and Radiopharmaceuticals, 56, 639–648. DOI: 10.1002/jlcr. 3094.10.1002/jlcr. 3094Suche in Google Scholar

Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J., & Meanwell, N. A. (2015). Applications of fluorine in medicinal hemistry. Journal of Medicinal Chemistry, 58, 8315–8359. DOI: 10.1021/acs.jmedchem.5b00258.10.1021/acs.jmedchem.5b00258Suche in Google Scholar PubMed

Granchelli, F. E., Filer, C. N., Soloway, A. H., & Neumeyer, . L. (1980). Aporphines. 27. Mechanistic aspects of the rearrangement of thebaine and codeine analogs in methanesulfonic acid. Improved method for the synthesis of N-alkylated aporphines. The Journal of Organic Chemistry, 45, 2275– 2278. DOI: 10.1021/jo01300a001.10.1021/jo01300a001Suche in Google Scholar

Hagmann, W. K. (2008). The many roles for fluorine in medicinal chemistry. Journal of Medicinal Chemistry, 51, 4359–4369. DOI: 10.1021/jm800219f.10.1021/jm800219fSuche in Google Scholar PubMed

Hosztafi, S., & Makleit, S. (1994). Synthesis of new morphine derivatives containing halogen in the aromatic ring. Synthetic Communications, 24, 3031–3045. DOI: 10.1080/0039791940 8011316.10.1080/0039791940 8011316Suche in Google Scholar

Hosztafi, S., & Makleit, S. (1996). Synthesis of new apomorphine derivatives containing halogen (CI and Br) in ring-D. Synthetic Communications, 26, 3909–3918. DOI:10.1080/00397919608003811.10.1080/00397919608003811Suche in Google Scholar

Huang, C. H., Liang, T., Harada, S. J., Lee, E. S., & Ritter, T. (2011). Silver-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids. Journal of the American Chemical Society, 133, 13308–13310. DOI: 10.1021/ja204861a.10.1021/ja204861aSuche in Google Scholar PubMed PubMed Central

Jacobson, O., Kiesewetter, D. O., & Chen, X. Y. (2015).Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chemistry, 26, 1–18. DOI:10.1021/bc500475e.10.1021/bc500475eSuche in Google Scholar PubMed PubMed Central

Littich, R., & Scott, P. J. H. (2012). Novel strategies for fluorine-18 radiochemistry. Angewandte Chemie International Edition, 51, 1106–1109. DOI: 10.1002/anie.201106785.x10.1002/anie.201106785Suche in Google Scholar PubMed

Lousberg, R. J. J. C., & Weiss, U. (1974). The analgesic action of 1-fluorocodeine. Experientia, 30, 1440–1441. DOI:10.1007/bf01919684.10.1007/bf01919684Suche in Google Scholar

Makleit, S., & Dubina, V. (2000). A gram scale preparation of 1-fluorocodeine and 1-fluorodihydrocodeine. ACH-Models in Chemistry, 137, 447–450.Suche in Google Scholar

Neumeyer, J. L., Gao, Y. G., Kula, N. S., & Baldessarini, R.J. (1990). Synthesis and dopamine receptor affinity of (R)-(–)-2-fluoro-N-n-propylnorapomorphine: A highly potent and selective dopamine D2 agonist. Journal of Medicinal Chemistry, 33, 3122–3124. DOI: 10.1021/jm00174a002.10.1021/jm00174a002Suche in Google Scholar PubMed

Ochiai, E. J., & Nakamura, T. (1939). Substitution des aromatischen Ringes bei Morphin-Alkaloiden. Berichteder deutschen chemischen Gesellschaft, 72, 684–688. DOI: 10.1002/cber.19390720409.10.1002/cber.19390720409Suche in Google Scholar

Ojima, I. (2009). Fluorine in medicinal chemistry and chemical biology. New York, NY, USA: Wiley. DOI: 10.1002/9781444312096.10.1002/9781444312096Suche in Google Scholar

Olofson, R. A., Martz, J. T., Senet, J. P., Piteau, M., & Malfroot, T. (1984). A new reagent for the selective, high-yiled N-dealkylation of tertiary amines: Improved syntheses of naltrexone and nalbuphine. The Journal of Organic Chemistry, 49, 2081–2082. DOI: 10.1021/jo00185a072.10.1021/jo00185a072Suche in Google Scholar

Ramsby, S., Neumeyer, J. L., Grigoriadis, D., & Seeman, P.(1989). 2-Haloaporphines as potent dopamine agonists. Journal of Medicinal Chemistry, 32, 1198–1201. DOI: 10.1021/jm00126a009.10.1021/jm00126a009Suche in Google Scholar PubMed

Ritter, T., Furuya, T., & Kaiser, H. M. (2011). U.S. Patent No. 2011/0,054,175. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Ritter, T., Brass, L., Keith, C., Watson, A., & Greenblatt, D. J.(2012). U.S. Patent No. 2012/0,149,900. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Søndergaard, K., Kristensen, J. L., Gillings, N., & Bergtrup, M.(2005). Synthesis of (R)-(–)-2-fluoroapomorphine. A precursor for the syntheis of (R)-(–)-2-fluoro-N-[11C]propylnorapomorphine for evaluation as a dopamine D2 agonist ligand for PET investigations. European Journal of Organic Chemistry, 20, 4428–4433. DOI: 10.1002/ejoc.200500295.10.1002/ejoc.200500295Suche in Google Scholar

Speyer, E., & Wieters, H. (1921). Beitrag zur Kenntnis der Kodeinoxyd-sulfonsauren und ihre Derivate. Berichte der deutschen chemischen Gesellschaft, 54, 2976–2987. DOI: 10.1002/cber.19210541106. (in German)10.1002/cber.19210541106. (in GermanSuche in Google Scholar

Sromek, A. W., Zhang, S. H., Akurathi, V., Packard, A. B., Li, W., Alagille, D., Morley, T. J., Baldwin, R., Tamagnan, G., & Neumeyer, J. L. (2014). Convenient syntheis of 18Fradiolabeled R-(–)-N-n-propyl-2-(3-fluoropropanoxy)-11-hydroxynorapomorphine. Journal of Labelled Compounds and Radiopharmaceuticals, 57, 725–729. DOI: 10.1002/jlcr.3246.10.1002/jlcr.3246Suche in Google Scholar PubMed PubMed Central

Szantay, C., Dörnyei, G., & Blasko, G. (1994). The morphine alkaloids. In G. A. Cordell, & A. Brossi (Eds.), The alkaloids: Chemistry and physiology, (Vol. 45, pp. 127–232). New York, NY, USA: Academic Press.Suche in Google Scholar

Tóth, G., & Mallareddy, J. R. (2013). Tritiated opioid receptor ligands as radiotracers. Current Pharmaceutical Design, 19, 7461–7472. DOI: 10.2174/138161281942140105170259.10.2174/138161281942140105170259Suche in Google Scholar PubMed

Wilson, M. L., Carroll, P. J., & Dalton, D. R. (2005). Decoration of the aromatic ring of dihydrocodeinone (hydrocodone) and 14-hydroxydihydrocodeinone (oxycodone). The Journal of Organic Chemistry, 70, 6492–6495. DOI: 10.1021/jo050264+.10.1021/jo050264+Suche in Google Scholar PubMed

Received: 2015-10-12
Revised: 2015-12-17
Accepted: 2015-12-18
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0033/html?lang=de
Button zum nach oben scrollen