Home Life Sciences Enzyme-assisted extraction of citrus essential oil
Article
Licensed
Unlicensed Requires Authentication

Enzyme-assisted extraction of citrus essential oil

  • Mónica L. Chávez-González , Lluvia I. López-López , Raúl Rodríguez-Herrera , Juan C. Contreras-Esquivel and Cristóbal N. Aguilar EMAIL logo
Published/Copyright: April 2, 2016
Become an author with De Gruyter Brill

Abstract

Citrus peels are underutilized in the processing industry and are commonly considered as waste as their chemical composition varies. However, it is possible to recover some value-added products, one of them being essential oil, which is widely used in the food industry. Due to the current increase in global demand for citrus essential oils, it is necessary to implement processes directed to the maximum recovery of oil from waste peels. Numerous efforts have been made without achieving significant improvements in yields. In this work, enzymatic pretreatments of orange, lemon, and grapefruit peels were applied to achieve increased yields of essential oil extracted by hydro-distillation. In two of the sources it was possible to increase the essential oil yield from two to six times. Moreover, a significant amount of fermentable sugars which can be used in the production of certain other compounds of interest through fermentation was obtained.

Acknowledgements

The authors want to thank the National Science Technology Council (CONACYT) of Mexico for the financial support to Monica L. Chávez-González during her postgraduate studies.

Alonso-Gutierrez, J., Chan, R., Batth, T. S., Adams, P. D., Keasling, J. D., Petzold, C. J., & Lee, T. S. (2013). Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 19, 33–41. DOI: 10.1016/j.ymben.2013.05.004.10.1016/j.ymben.2013.05.004Search in Google Scholar

AOAC International (2012). Official methods of analysis of AOAC International (19th ed.). Gaithersburg, MD, USA: AOAC International.Search in Google Scholar

Berna, A., Tarrega, A., Blasco, M., & Subirats, S. (2000). Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. Journal of Supercritical Fluids, 18, 227–237. DOI: 10.1016/s0896-8446(00)00082-6.10.1016/s0896-8446(00)00082-6Search in Google Scholar

Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383. DOI: 10.1016/s0734-9750(00)00041-0.10.1016/s0734-9750(00)00041-0Search in Google Scholar

Blanco Tirado, C., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R. (1995). Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697, 501–513. DOI: 10.1016/0021-9673(94)00955-9.10.1016/0021-9673(94)00955-9Search in Google Scholar

Boluda-Aguilar, M., & Lopez-Gomez, A. (2013). Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Industrial Crops and Products, 41, 188–197. DOI: 10.1016/j.indcrop.2012.04.031.10.1016/j.indcrop.2012.04.031Search in Google Scholar

Bousbia, N., Abert-Vian, M., Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2009). A new process for extraction o essential oil from Citrus peels: Microwave hydrodiffusion and gravity. Journal of Food Engineering, 90, 409–413. DOI: 10.1016/j.jfoodeng.2008.06.034.10.1016/j.jfoodeng.2008.06.034Search in Google Scholar

Choi, I. S., Kim, J. H., Wi, S. G., Kim, K. H., & Bae, H. J. (2013). Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Applied Energy, 102, 204–210. DOI: 10.1016/j.apenergy.2012.03.066.10.1016/j.apenergy.2012.03.066Search in Google Scholar

Coll, L., Saura, D., Ruiz, M. P., Ros, J. M., Canovas, L. A., & Laencina, J. (1995). Viscometric control in the enzymatic extraction of citrus peel oils. Food Control, 5, 143–146. DOI: 10.1016/0956-7135(95)00010-o.10.1016/0956-7135(95)00010-oSearch in Google Scholar

FAO (2012). Comercio y mercados. Mercados de productos agricolas. Frutos citricos. Retrieved November 26, 2014, from http://www.fao.org/economic/est/est-commodities/citricos/es/ (in Spanish)Search in Google Scholar

Ferhat, M. A., Meklati, B. Y., Smadja, J., & Chemat, F. (2006). An improved microwave Clevenger apparatus for distillation of essential oil from orange peel. Journal of Chromatography A, 1112, 121–126. DOI: 10.1016/j.chroma.2005.12.030.10.1016/j.chroma.2005.12.030Search in Google Scholar PubMed

Guo, X. F., Han, D. M., Xi, H. P., Rao, L., Liao, X. J., Hu, X. S., & Wu, J. H. (2012). Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate Polymers, 88, 441–448. DOI: 10.1016/j.carbpol.2011.12.026.10.1016/j.carbpol.2011.12.026Search in Google Scholar

Hegazy, M. E. F., Mohamed, T. A., ElShamy, A. I., Mohamed, A. E. H. H., Mahalel, U. A., Reda, E. H., Shaheen, A. M., Tawfik, W. A., Shahat, A. A., Shams, K. A., Abdel-Azim, N. S., & Hammouda, F. M. (2015). Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review. Journal of Advanced Research, 6, 17–33. DOI: 10.1016/j.jare.2014.11.009.10.1016/j.jare.2014.11.009Search in Google Scholar

Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., Brahim, N. B., & Sebei, H. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123, 1098–1104. DOI: 10.1016/j.foodchem.2010.05.068.10.1016/j.foodchem.2010.05.068Search in Google Scholar

Lago, S., Rodriguez, H., Arce, A., & Soto, A. (2014). Improved concentration of citrus essential oil by solvent extraction with acetate ionic liquids. Fluid Phase Equilibria, 361, 37–44. DOI: 10.1016/j.fluid.2013.10.036.10.1016/j.fluid.2013.10.036Search in Google Scholar

Lohrasbi, M., Pourbafrani, M., Niklasson, C., & Taherzadeh, M. J. (2010). Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresource Technology, 101, 7382–7388. DOI: 10.1016/j.biortech.2010.04.078.10.1016/j.biortech.2010.04.078Search in Google Scholar

Marin, F. R., Soler-Rivas, C., Benavente-Garcia, O., Castillo, J., & Pérez-Alvarado, J. A. (2007). By-products from different citrus processes as a source of customized functional fibers. Food Chemistry, 100, 736–741. DOI: 10.1016/j.foodchem. 2005.04.040.10.1016/j.foodchem. 2005.04.040Search in Google Scholar

Masmoudi, M., Besbes, S., Chaabouni, M., Robert, C., Paquot, M., Blecker, C., & Attia, H. (2008). Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers, 74, 185–192. DOI: 10.1016/j.carbpol.2008.02.003.10.1016/j.carbpol.2008.02.003Search in Google Scholar

Minh Tu, N. T., Thanh, L. X., Une, A., Ukeda, H., & Sawamura, M. (2002). Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal, 17, 169–174. DOI: 10.1002/ffj.1076.10.1002/ffj.1076Search in Google Scholar

Misharina, T. A., Terenina, M. B., Krikunova, N. I., & Kalinichenko, M. A. (2011). The influence of the composition of essential lemon oils o their antioxidant properties and the stability of the components. Russian Journal of Bioorganic Chemistry, 37, 883–887. DOI: 10.1134/s1068162011070168.10.1134/s1068162011070168Search in Google Scholar

Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. The Journal of Biological Chemistry, 153, 375-380.10.1016/S0021-9258(18)71980-7Search in Google Scholar

Njoroge, S. M., Koaze, H., Karanja, P. N., & Sawamura, M. (2005). Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oil from Kenya. Journal of Agricultural and Food Chemistry, 53, 9790–9794. DOI: 10.1021/jf051373s.10.1021/jf051373sSearch in Google Scholar PubMed

Oberoi, H. S., Vadlani, P. V., Nanjundaswamy, A., Bansal, S., Singh, S., Kaur, S., & Babbar, N. (2011). Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresource Technology, 102, 1593–1601. DOI: 10.1016/j.biortech.2010.08.111.10.1016/j.biortech.2010.08.111Search in Google Scholar PubMed

Pourbafrani, M., Forgacs, G., Sarvari Horvath, I., Niklasson, C., & Taherzadeh, M. J. (2010). Production of biofuels, limonene and pectin from citrus wastes. Bioresource Technology, 101, 4246–4250. DOI: 10.1016/j.biortech.2010.01.077.10.1016/j.biortech.2010.01.077Search in Google Scholar PubMed

Raeissi, S., Diaz, S., Espinosa, S., Peters, C. J., & Brignole, E. A. (2008). Ethane as an alternative solvent for supercritical extraction of orange peel oils. The Journal of Supercritical Fluids, 45, 306–313. DOI: 10.1016/j.supflu.2008.01.008.10.1016/j.supflu.2008.01.008Search in Google Scholar

Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90, 606614. DOI: 10.1016/j.fbp.2012.06.002.10.1016/j.fbp.2012.06.002Search in Google Scholar

Rezzoug, S. A., & Louka, N. (2009). Thermomechanical process intensification for oil extraction from orange peels. Innovative Food Science & Emerging Technologies, 10, 530–536. DOI: 10.1016/j.ifset.2009.05.008.10.1016/j.ifset.2009.05.008Search in Google Scholar

Rivas, B., Torrado, A., Torre, P., Converti, A., & Domlnguez, J. M. (2008). Submerged citric acid fermentation on orange peel autohydrolysate. Journal of Agricultural and Food Chemistry, 56, 2380–2387. DOI: 10.1021/jf073388r.10.1021/jf073388rSearch in Google Scholar PubMed

Rojas, J. P. L., Perea, A. V., & Stashenko, E. E. (2009). Obtencion de aceites esenciales y pectinas a partir de subproductos de jugos cltricos. Vitae, Revista de la Facultad de Quimica Farmacéutica, 16, 110–115. (in Spanish)Search in Google Scholar

Sahraoui, N., Abert-Vian, M., El Maataoui, M., Boutekedjiret, C., & Chemat, F. (2011). Valorization of citrus byproducts using microwave steam distillation (MSD). Innovative Food Science & Emerging Technologies, 12, 163–170. DOI: 10.1016/j.ifset.2011.02.002.10.1016/j.ifset.2011.02.002Search in Google Scholar

Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P. K., & Dubey, N. K. (2010). Chemical profile, anifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology, 48, 1734–1740. DOI: 10.1016/j.fct.2010.04.001.10.1016/j.fct.2010.04.001Search in Google Scholar PubMed

Sowbhagya, H. B., Sushma, S. B., Rastogi, N. K., & Naidu, M. M. (2013). Effect of pretreatments on extraction of pigment from marigold flower. Journal of Food Science and Technolgy, 50, 122–128. DOI: 10.1007/s13197-011-0313-4.10.1007/s13197-011-0313-4Search in Google Scholar PubMed PubMed Central

Ueno, H., Tanaka, M., Hosino, M., Sasaki, M., & Goto, M. (2008). Extraction of valuable compounds from the flavedo of Citrus junos using subcritical water. Separation and Purification Technology, 62, 513–516. DOI: 10.1016/j.seppur.2008.03.004.10.1016/j.seppur.2008.03.004Search in Google Scholar

Wilkins, M., Widmer, W. W., Grohmann, K., & Cameron, R. G. (2007). Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology, 98, 1596–1601. DOI: 10.1016/j.biortech.2006.06.022.10.1016/j.biortech.2006.06.022Search in Google Scholar PubMed

Received: 2014-12-22
Revised: 2015-7-29
Accepted: 2015-8-2
Published Online: 2016-4-2
Published in Print: 2016-2-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
  3. Original Paper
  4. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
  5. Original Paper
  6. Reaction mechanisms of carbon dioxide methanation
  7. Review
  8. Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
  9. Short Communication
  10. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
  11. Original Paper
  12. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions
  13. Original Paper
  14. Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
  15. Original Paper
  16. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water
  17. Review
  18. Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
  19. Original Paper
  20. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
  21. Short Communication
  22. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch
  23. Original Paper
  24. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
  25. Original Paper
  26. Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
  27. Preface
  28. Enzyme-assisted extraction of citrus essential oil
  29. Preface
  30. Experimental investigations of liquid flow in pipe with flat internal baffles
Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0234/pdf
Scroll to top button