Startseite An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites

  • Bo-Qiang Li , Fei Nie , Qing-Lin Sheng und Jian-Bin Zheng EMAIL logo
Veröffentlicht/Copyright: 27. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A functional Ag-Fe3O4-grapheme oxide magnetic nanocomposite was synthesized and used to prepare a nitrite sensor. Morphology and composition of the nanocomposites were characterized by a transmission electron microscope, UV-VIS spectroscopy, X-ray diffraction, and Fourier transform infrared spectra. Electrochemical investigation indicated that the nanocomposites possess excellent electrochemical oxidation ability towards nitrites. The sensor exhibited two linear ranges: one from 0.5 μM to 0.72 mM with a correlation coefficient of 0.996 and sensitivity of 1996 μA mM−1 cm−2; the other from 0.72 mM to 8.15 mM with a correlation coefficient of 0.998 and sensitivity of 426 μA mM−1 cm−2. The limit of detection of this sensing system was 0.17 μM at the signalto- noise ratio of 3. Additionally, the sensor exhibited long-term stability, good reproducibility, and anti-interference.

References

Afkhami, A., Bahram, M., Gholami, S., & Zand, Z. (2005). Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Analytical Biochemistry, 336, 295-299. DOI: 10.1016/j.ab.2004.10.026.10.1016/j.ab.2004.10.026Suche in Google Scholar PubMed

Basu, S., & Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical, 173, 1-21. DOI: 10.1016/j.snb.2012.07.092.10.1016/j.snb.2012.07.092Suche in Google Scholar

Brylev, O., Sarrazin, M., Roué, L., & Bélanger, D. (2007). Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta, 52, 6237-6247. DOI: 10.1016/j.electacta.2007.03.072.10.1016/j.electacta.2007.03.072Suche in Google Scholar

Chen, D., Feng, H. B., & Li, J. H. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 112, 6027-6053. DOI: 10.1021/ cr300115g.10.1021/cr300115gSuche in Google Scholar PubMed

Deng, Y. H., Deng, C. H., Yang, D.,Wang, C. C., Fu, S. K., & Zhang, X. M. (2005). Preparation, characterization and application of magnetic silica nanoparticle functionalized multiwalled carbon nanotubes. Chemical Communications, 2005, 5548-5550. DOI: 10.1039/b511683j.10.1039/b511683jSuche in Google Scholar PubMed

Devi, R., Batra, B., Lata, S., Yadav, S., & Pundir, C. S. (2013). A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48, 242-249. DOI: 10.1016/j.procbio.2012.12.009.10.1016/j.procbio.2012.12.009Suche in Google Scholar

Dreyer, D. R., Park, S. J., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228-240. DOI: 10.1039/b917103g.10.1039/B917103GSuche in Google Scholar

Ensafi, A. A., Abarghoui, M. M., & Rezaei, B. (2014). Electrochemical determination of hydrogen peroxide using copper/ porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical, 196, 398-405. DOI: 10.1016/j.snb. 2014.02.028.Suche in Google Scholar

Guy, K. A., Xu, H. P., Yang, J. C., Werth, C. J., & Shapley, J. R. (2009). Catalytic nitrate and nitrite reduction with Pd-Cu/PVP colloids in water: Composition, structure, and reactivity correlations. The Journal of Physical Chemistry C, 113, 8177-8185. DOI: 10.1021/jp810049y.10.1021/jp810049ySuche in Google Scholar

Hu, Y. W., Li, F. H., Bai,X.X., Li,D., Hua, S. C.,Wang, K. K., & Niu, L. (2011). Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chemical Communications, 47, 1743-1745. DOI: 10.1039/c0cc04514d.10.1039/C0CC04514DSuche in Google Scholar

Iammarino, M., Di Taranto, A., & Cristino, M. (2013). Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring. Food Chemistry, 140, 763-771. DOI: 10.1016/j.foodchem.2012.10.094.10.1016/j.foodchem.2012.10.094Suche in Google Scholar PubMed

Jiang, L. Y., Wang, R. X., Li, X. M., Jiang, L. P., & Lu, G. H. (2005). Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communication, 7, 597-601. DOI: 10.1016/j.elecom.2005.04.009.10.1016/j.elecom.2005.04.009Suche in Google Scholar

Jiang, Y. S., Zheng, B. Z., Du, J., Liu, G. Y., Guo, Y., & Xiao, D. (2013). Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 112, 129-135. DOI: 10.1016/j.talanta.2013.03.015.10.1016/j.talanta.2013.03.015Suche in Google Scholar

Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172, 540-549. DOI: 10.1016/j.cej.2011.05.093.10.1016/j.cej.2011.05.093Suche in Google Scholar

Li, H., Meininger, C. J., & Wu, G. Y. (2000). Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 746, 199-207. DOI: 10.1016/s0378-4347(00)00328-5.10.1016/S0378-4347(00)00328-5Suche in Google Scholar

Li, J., & Liu, C. Y. (2010). Ag/graphene heterostructures: Synthesis, characterization and optical properties. European Journal of Inorganic Chemistry, 2010, 1244-1248. DOI: 10.1002/ejic.200901048.10.1002/ejic.200901048Suche in Google Scholar

Li, X. R., Kong, F. Y., Liu, J., Liang, T. M., Xu, J. J., & Chen, H. Y. (2012). Synthesis of potassium-modified graphene and its application in nitrite-selective sensing. Advanced Functional Materials, 22, 1981-1988. DOI: 10.1002/adfm.201103025.10.1002/adfm.201103025Suche in Google Scholar

Lin, Z., Xue, W., Chen, H., & Lin, J. M. (2011). Peroxynitrousacid- induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Analytical Chemistry, 83, 8245-8251. DOI: 10.1021/ac202039h.10.1021/ac202039hSuche in Google Scholar PubMed

Liu, H., Gao, J., Xue, M. Q., Zhu, N., Zhang, M. N., & Cao, T. B. (2009). Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir, 25, 12006-12010. DOI: 10.1021/la9029613.10.1021/la9029613Suche in Google Scholar PubMed

Mani, V., Periasamy, A. P., & Chen, S. M. (2012). Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications, 17, 75-78. DOI: 10.1016/j.elecom.2012.02.009.10.1016/j.elecom.2012.02.009Suche in Google Scholar

Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806-4814. DOI: 10.1021/nn1006368.10.1021/nn1006368Suche in Google Scholar PubMed

Miao, P., Shen, M., Ning, L. M., Chen, G. F., & Yin, Y. M. (2011). Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Analytical and Bioanalytical Chemistry, 399, 2407-2411. DOI: 10.1007/s00216-010-4642-3.10.1007/s00216-010-4642-3Suche in Google Scholar PubMed

Muchindu, M., Waryo, T., Arotiba, O., Kazimierska, E., Morrin, A., Killard, A. J., Smyth, M. R., Jahed, N., Kgarebe, B., Baker, P. G. L., & Iwuoha, E. I. (2010). Electrochemical nitrite nanosensor developed with amineand sulphate-functionalised polystyrene latex beads selfassembled on polyaniline. Electrochimica Acta, 55, 4274-4280. DOI: 10.1016/j.electacta.2009.06.047.10.1016/j.electacta.2009.06.047Suche in Google Scholar

Murugan, A. V., Muraliganth, T., & Manthiram, A. (2009). Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chemistry of Materials, 21, 5004-5006. DOI: 10.1021/cm902413c.10.1021/cm902413cSuche in Google Scholar

Ning, D. L., Zhang, H. F., & Zheng, J. B. (2014). Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. Journal of Electroanalytical Chemistry, 717-718, 29-34. DOI: 10.1016/j.jelechem.2013.12.011.10.1016/j.jelechem.2013.12.011Suche in Google Scholar

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Twodimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453. DOI: 10.1073/pnas.0502848102.10.1073/pnas.0502848102Suche in Google Scholar PubMed PubMed Central

Qu, J. C., Ren, C. L., Dong, Y. L., Chang, Y. P., Zhou, M., & Chen, X. G. (2012). Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts. Chemical Engineering Journal, 211-212, 412-420. DOI: 10.1016/j.cej.2012.09.096.10.1016/j.cej.2012.09.096Suche in Google Scholar

Salimi, A., Noorbakhsh, A., & Ghadermarzi, M. (2007). Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 123, 530-537. DOI: 10.1016/j.snb.2006.09.054.10.1016/j.snb.2006.09.054Suche in Google Scholar

Šljukić, B., Banks, C. E., Crossley, A., & Compton, R. G. (2007). Copper oxide - graphite composite electrodes: Application to nitrite sensing. Electroanalysis, 19, 79-84. DOI: 10.1002/elan.200603708.10.1002/elan.200603708Suche in Google Scholar

Song, Y. H., He, Z. F., Hou, H. Q., Wang, X. L., & Wang, L. (2012). Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochimica Acta, 71, 58-65. DOI: 10.1016/j. electacta.2012.03.077.Suche in Google Scholar

Sun, W. L., Zhang, S., Liu, H. Z., Jin, L. T., & Kong, J. L. (1999). Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(II)- substituted Keggin type heteropolytungstate. Analytica Chimica Acta, 388, 103-110. DOI: 10.1016/s0003-2670(99) 00064-1.Suche in Google Scholar

Sun,W., Zhang, Y. Y., Ju, X.M., Li, G. J., Gao, H.W., & Sun, Z. F. (2012). Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly- L-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Analytica Chimica Acta, 752, 39-44. DOI: 10.1016/j.aca.2012.09.009.10.1016/j.aca.2012.09.009Suche in Google Scholar PubMed

Teymourian, H., Salimi, A., & Khezrian, S. (2013). Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49, 1-8. DOI: 10.1016/j.bios.2013.04.034.10.1016/j.bios.2013.04.034Suche in Google Scholar PubMed

Wang, L. Y., Bao, J., Wang, L., Zhang, F., & Li, Y. D. (2006). One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry A European Journal, 12, 6341-6347. DOI: 10.1002/chem. 200501334.Suche in Google Scholar

Wang, P., Mai, Z. B., Dai, Z., Li, Y. X., & Zou, X. Y. (2009). Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosensors and Bioelectronics, 24, 3242-3247. DOI: 10.1016/j.bios.2009.04.006.10.1016/j.bios.2009.04.006Suche in Google Scholar PubMed

Wang, D. T., Li, X., Chen, J. F., & Tao, X. (2012). Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chemical Engineering Journal, 198-199, 547-554. DOI: 10.1016/j.cej. 2012.04.062.Suche in Google Scholar

Yang, H. F., Shan, C. S., Li, F. H., Han, D. X., Zhang, Q. X., & Niu, L. (2009a). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, 2009, 3880-3882. DOI: 10.1039/b905085j.10.1039/b905085jSuche in Google Scholar PubMed

Yang, X. Y., Zhang, X. Y., Ma, Y. F., Huang, Y.,Wang, Y. S., & Chen, Y. S. (2009b). Superparamagnetic graphene oxide- Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 19, 2710-2714. DOI: 10.1039/b821416f.10.1039/b821416fSuche in Google Scholar

Yang, Y. K., He, C. E., He, W. J., Yu, L. J., Peng, R. G., Xie, X. L., Wang, X. B., & Mai, Y. W. (2011). Reduction of silver nanoparticles onto graphene oxide nanosheets with N,Ndimethylformamide and SERS activities of GO/Ag composites. Journal of Nanoparticle Research, 13, 5571-5581. DOI: 10.1007/s11051-011-0550-5. 10.1007/s11051-011-0550-5Suche in Google Scholar

Ye, Y. P, Kong, T.,Yu,X. F., Wu,Y.K., Zhang, K.,&Wang, X. P. (2012). Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 89, 417-421. DOI: 10.1016/j.talanta.2011. 12.054.Suche in Google Scholar

Yuan, B. Q., Xu, C. Y., Deng, D. H., Xing, Y., Liu, L., Pang, H., & Zhang, D. J. (2013). Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta, 88, 708-712. DOI: 10.1016/j.electacta.2012.10.102.10.1016/j.electacta.2012.10.102Suche in Google Scholar

Zhao, B., Liu, Z. R., Liu, Z. L., Liu, G. X., Li, Z.,Wang, J. X.,& Dong, X. T. (2009). Silver microspheres for application as hydrogen peroxide sensor. Electrochemistry Communications, 11, 1707-1710. DOI: 10.1016/j.elecom.2009.06.035.10.1016/j.elecom.2009.06.035Suche in Google Scholar

Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201-204. DOI: 10.1038/nature04235.10.1038/nature04235Suche in Google Scholar PubMed

Zhang, Y., Zhao, Y. H., Yuan, S. S., Wang, H. G., & He, C. D. (2013). Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 185, 602-607. DOI: 10.1016/j.snb.2013.05.059.10.1016/j.snb.2013.05.059Suche in Google Scholar

Zhu, N. N., Xu, Q., Li, S. N., & Gao, H. (2009). Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochemistry Communications, 11, 2308-2311. DOI: 10.1016/j.elecom.2009.10.018. 10.1016/j.elecom.2009.10.018Suche in Google Scholar

Received: 2014-8-19
Revised: 2015-1-12
Accepted: 2015-1-12
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
  2. An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
  3. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
  4. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
  5. Electrode and electrodeless impedance measurement for determination of orange juices parameters
  6. Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
  7. Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
  8. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
  9. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
  10. Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
  11. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
  12. Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
  13. Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
  14. Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0099/html?lang=de
Button zum nach oben scrollen