Abstract
A functional Ag-Fe3O4-grapheme oxide magnetic nanocomposite was synthesized and used to prepare a nitrite sensor. Morphology and composition of the nanocomposites were characterized by a transmission electron microscope, UV-VIS spectroscopy, X-ray diffraction, and Fourier transform infrared spectra. Electrochemical investigation indicated that the nanocomposites possess excellent electrochemical oxidation ability towards nitrites. The sensor exhibited two linear ranges: one from 0.5 μM to 0.72 mM with a correlation coefficient of 0.996 and sensitivity of 1996 μA mM−1 cm−2; the other from 0.72 mM to 8.15 mM with a correlation coefficient of 0.998 and sensitivity of 426 μA mM−1 cm−2. The limit of detection of this sensing system was 0.17 μM at the signalto- noise ratio of 3. Additionally, the sensor exhibited long-term stability, good reproducibility, and anti-interference.
References
Afkhami, A., Bahram, M., Gholami, S., & Zand, Z. (2005). Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Analytical Biochemistry, 336, 295-299. DOI: 10.1016/j.ab.2004.10.026.10.1016/j.ab.2004.10.026Suche in Google Scholar PubMed
Basu, S., & Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical, 173, 1-21. DOI: 10.1016/j.snb.2012.07.092.10.1016/j.snb.2012.07.092Suche in Google Scholar
Brylev, O., Sarrazin, M., Roué, L., & Bélanger, D. (2007). Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta, 52, 6237-6247. DOI: 10.1016/j.electacta.2007.03.072.10.1016/j.electacta.2007.03.072Suche in Google Scholar
Chen, D., Feng, H. B., & Li, J. H. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 112, 6027-6053. DOI: 10.1021/ cr300115g.10.1021/cr300115gSuche in Google Scholar PubMed
Deng, Y. H., Deng, C. H., Yang, D.,Wang, C. C., Fu, S. K., & Zhang, X. M. (2005). Preparation, characterization and application of magnetic silica nanoparticle functionalized multiwalled carbon nanotubes. Chemical Communications, 2005, 5548-5550. DOI: 10.1039/b511683j.10.1039/b511683jSuche in Google Scholar PubMed
Devi, R., Batra, B., Lata, S., Yadav, S., & Pundir, C. S. (2013). A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48, 242-249. DOI: 10.1016/j.procbio.2012.12.009.10.1016/j.procbio.2012.12.009Suche in Google Scholar
Dreyer, D. R., Park, S. J., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228-240. DOI: 10.1039/b917103g.10.1039/B917103GSuche in Google Scholar
Ensafi, A. A., Abarghoui, M. M., & Rezaei, B. (2014). Electrochemical determination of hydrogen peroxide using copper/ porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical, 196, 398-405. DOI: 10.1016/j.snb. 2014.02.028.Suche in Google Scholar
Guy, K. A., Xu, H. P., Yang, J. C., Werth, C. J., & Shapley, J. R. (2009). Catalytic nitrate and nitrite reduction with Pd-Cu/PVP colloids in water: Composition, structure, and reactivity correlations. The Journal of Physical Chemistry C, 113, 8177-8185. DOI: 10.1021/jp810049y.10.1021/jp810049ySuche in Google Scholar
Hu, Y. W., Li, F. H., Bai,X.X., Li,D., Hua, S. C.,Wang, K. K., & Niu, L. (2011). Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chemical Communications, 47, 1743-1745. DOI: 10.1039/c0cc04514d.10.1039/C0CC04514DSuche in Google Scholar
Iammarino, M., Di Taranto, A., & Cristino, M. (2013). Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring. Food Chemistry, 140, 763-771. DOI: 10.1016/j.foodchem.2012.10.094.10.1016/j.foodchem.2012.10.094Suche in Google Scholar PubMed
Jiang, L. Y., Wang, R. X., Li, X. M., Jiang, L. P., & Lu, G. H. (2005). Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communication, 7, 597-601. DOI: 10.1016/j.elecom.2005.04.009.10.1016/j.elecom.2005.04.009Suche in Google Scholar
Jiang, Y. S., Zheng, B. Z., Du, J., Liu, G. Y., Guo, Y., & Xiao, D. (2013). Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 112, 129-135. DOI: 10.1016/j.talanta.2013.03.015.10.1016/j.talanta.2013.03.015Suche in Google Scholar
Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172, 540-549. DOI: 10.1016/j.cej.2011.05.093.10.1016/j.cej.2011.05.093Suche in Google Scholar
Li, H., Meininger, C. J., & Wu, G. Y. (2000). Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 746, 199-207. DOI: 10.1016/s0378-4347(00)00328-5.10.1016/S0378-4347(00)00328-5Suche in Google Scholar
Li, J., & Liu, C. Y. (2010). Ag/graphene heterostructures: Synthesis, characterization and optical properties. European Journal of Inorganic Chemistry, 2010, 1244-1248. DOI: 10.1002/ejic.200901048.10.1002/ejic.200901048Suche in Google Scholar
Li, X. R., Kong, F. Y., Liu, J., Liang, T. M., Xu, J. J., & Chen, H. Y. (2012). Synthesis of potassium-modified graphene and its application in nitrite-selective sensing. Advanced Functional Materials, 22, 1981-1988. DOI: 10.1002/adfm.201103025.10.1002/adfm.201103025Suche in Google Scholar
Lin, Z., Xue, W., Chen, H., & Lin, J. M. (2011). Peroxynitrousacid- induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Analytical Chemistry, 83, 8245-8251. DOI: 10.1021/ac202039h.10.1021/ac202039hSuche in Google Scholar PubMed
Liu, H., Gao, J., Xue, M. Q., Zhu, N., Zhang, M. N., & Cao, T. B. (2009). Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir, 25, 12006-12010. DOI: 10.1021/la9029613.10.1021/la9029613Suche in Google Scholar PubMed
Mani, V., Periasamy, A. P., & Chen, S. M. (2012). Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications, 17, 75-78. DOI: 10.1016/j.elecom.2012.02.009.10.1016/j.elecom.2012.02.009Suche in Google Scholar
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806-4814. DOI: 10.1021/nn1006368.10.1021/nn1006368Suche in Google Scholar PubMed
Miao, P., Shen, M., Ning, L. M., Chen, G. F., & Yin, Y. M. (2011). Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Analytical and Bioanalytical Chemistry, 399, 2407-2411. DOI: 10.1007/s00216-010-4642-3.10.1007/s00216-010-4642-3Suche in Google Scholar PubMed
Muchindu, M., Waryo, T., Arotiba, O., Kazimierska, E., Morrin, A., Killard, A. J., Smyth, M. R., Jahed, N., Kgarebe, B., Baker, P. G. L., & Iwuoha, E. I. (2010). Electrochemical nitrite nanosensor developed with amineand sulphate-functionalised polystyrene latex beads selfassembled on polyaniline. Electrochimica Acta, 55, 4274-4280. DOI: 10.1016/j.electacta.2009.06.047.10.1016/j.electacta.2009.06.047Suche in Google Scholar
Murugan, A. V., Muraliganth, T., & Manthiram, A. (2009). Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chemistry of Materials, 21, 5004-5006. DOI: 10.1021/cm902413c.10.1021/cm902413cSuche in Google Scholar
Ning, D. L., Zhang, H. F., & Zheng, J. B. (2014). Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. Journal of Electroanalytical Chemistry, 717-718, 29-34. DOI: 10.1016/j.jelechem.2013.12.011.10.1016/j.jelechem.2013.12.011Suche in Google Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Twodimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453. DOI: 10.1073/pnas.0502848102.10.1073/pnas.0502848102Suche in Google Scholar PubMed PubMed Central
Qu, J. C., Ren, C. L., Dong, Y. L., Chang, Y. P., Zhou, M., & Chen, X. G. (2012). Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts. Chemical Engineering Journal, 211-212, 412-420. DOI: 10.1016/j.cej.2012.09.096.10.1016/j.cej.2012.09.096Suche in Google Scholar
Salimi, A., Noorbakhsh, A., & Ghadermarzi, M. (2007). Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 123, 530-537. DOI: 10.1016/j.snb.2006.09.054.10.1016/j.snb.2006.09.054Suche in Google Scholar
Šljukić, B., Banks, C. E., Crossley, A., & Compton, R. G. (2007). Copper oxide - graphite composite electrodes: Application to nitrite sensing. Electroanalysis, 19, 79-84. DOI: 10.1002/elan.200603708.10.1002/elan.200603708Suche in Google Scholar
Song, Y. H., He, Z. F., Hou, H. Q., Wang, X. L., & Wang, L. (2012). Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochimica Acta, 71, 58-65. DOI: 10.1016/j. electacta.2012.03.077.Suche in Google Scholar
Sun, W. L., Zhang, S., Liu, H. Z., Jin, L. T., & Kong, J. L. (1999). Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(II)- substituted Keggin type heteropolytungstate. Analytica Chimica Acta, 388, 103-110. DOI: 10.1016/s0003-2670(99) 00064-1.Suche in Google Scholar
Sun,W., Zhang, Y. Y., Ju, X.M., Li, G. J., Gao, H.W., & Sun, Z. F. (2012). Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly- L-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Analytica Chimica Acta, 752, 39-44. DOI: 10.1016/j.aca.2012.09.009.10.1016/j.aca.2012.09.009Suche in Google Scholar PubMed
Teymourian, H., Salimi, A., & Khezrian, S. (2013). Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49, 1-8. DOI: 10.1016/j.bios.2013.04.034.10.1016/j.bios.2013.04.034Suche in Google Scholar PubMed
Wang, L. Y., Bao, J., Wang, L., Zhang, F., & Li, Y. D. (2006). One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry A European Journal, 12, 6341-6347. DOI: 10.1002/chem. 200501334.Suche in Google Scholar
Wang, P., Mai, Z. B., Dai, Z., Li, Y. X., & Zou, X. Y. (2009). Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosensors and Bioelectronics, 24, 3242-3247. DOI: 10.1016/j.bios.2009.04.006.10.1016/j.bios.2009.04.006Suche in Google Scholar PubMed
Wang, D. T., Li, X., Chen, J. F., & Tao, X. (2012). Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chemical Engineering Journal, 198-199, 547-554. DOI: 10.1016/j.cej. 2012.04.062.Suche in Google Scholar
Yang, H. F., Shan, C. S., Li, F. H., Han, D. X., Zhang, Q. X., & Niu, L. (2009a). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, 2009, 3880-3882. DOI: 10.1039/b905085j.10.1039/b905085jSuche in Google Scholar PubMed
Yang, X. Y., Zhang, X. Y., Ma, Y. F., Huang, Y.,Wang, Y. S., & Chen, Y. S. (2009b). Superparamagnetic graphene oxide- Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 19, 2710-2714. DOI: 10.1039/b821416f.10.1039/b821416fSuche in Google Scholar
Yang, Y. K., He, C. E., He, W. J., Yu, L. J., Peng, R. G., Xie, X. L., Wang, X. B., & Mai, Y. W. (2011). Reduction of silver nanoparticles onto graphene oxide nanosheets with N,Ndimethylformamide and SERS activities of GO/Ag composites. Journal of Nanoparticle Research, 13, 5571-5581. DOI: 10.1007/s11051-011-0550-5. 10.1007/s11051-011-0550-5Suche in Google Scholar
Ye, Y. P, Kong, T.,Yu,X. F., Wu,Y.K., Zhang, K.,&Wang, X. P. (2012). Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 89, 417-421. DOI: 10.1016/j.talanta.2011. 12.054.Suche in Google Scholar
Yuan, B. Q., Xu, C. Y., Deng, D. H., Xing, Y., Liu, L., Pang, H., & Zhang, D. J. (2013). Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta, 88, 708-712. DOI: 10.1016/j.electacta.2012.10.102.10.1016/j.electacta.2012.10.102Suche in Google Scholar
Zhao, B., Liu, Z. R., Liu, Z. L., Liu, G. X., Li, Z.,Wang, J. X.,& Dong, X. T. (2009). Silver microspheres for application as hydrogen peroxide sensor. Electrochemistry Communications, 11, 1707-1710. DOI: 10.1016/j.elecom.2009.06.035.10.1016/j.elecom.2009.06.035Suche in Google Scholar
Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201-204. DOI: 10.1038/nature04235.10.1038/nature04235Suche in Google Scholar PubMed
Zhang, Y., Zhao, Y. H., Yuan, S. S., Wang, H. G., & He, C. D. (2013). Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 185, 602-607. DOI: 10.1016/j.snb.2013.05.059.10.1016/j.snb.2013.05.059Suche in Google Scholar
Zhu, N. N., Xu, Q., Li, S. N., & Gao, H. (2009). Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochemistry Communications, 11, 2308-2311. DOI: 10.1016/j.elecom.2009.10.018. 10.1016/j.elecom.2009.10.018Suche in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
- An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
- Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
- Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
- Electrode and electrodeless impedance measurement for determination of orange juices parameters
- Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
- Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
- Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
- Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
- Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
- Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
- Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
- Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
- Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Artikel in diesem Heft
- Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
- An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
- Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
- Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
- Electrode and electrodeless impedance measurement for determination of orange juices parameters
- Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
- Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
- Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
- Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
- Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
- Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
- Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
- Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
- Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines