Home Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
Article
Licensed
Unlicensed Requires Authentication

Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode

  • Iulia Gabriela David , Mihai-Alexandru Florea , Oana Georgiana Cracea , Dana Elena Popa , Mihaela Buleandra , Emilia Elena Iorgulescu , Vasile David , Irinel Adriana Badea and Anton Alexandru Ciucu EMAIL logo
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

Due to the importance of B1 and B6 vitamins for human health it is useful to develop new cheap and rapid methods for their determination. Voltammetric behavior of these vitamins on a pencil graphite electrode was investigated using cyclic voltammetry in different media. Direct quantitative determination of the two vitamins, one in the presence of the other, was done by differential pulse voltammetry. Vitamin B1 was electroactive only in a NaOH solution generating two irreversible oxidation peaks; the first peak obtained at 250 mV is well-defined and was used in quantitative determinations. In case of vitamin B6, a well-defined oxidation peak was observed in all investigated supporting electrolytes except for HCl. The linear concentration ranges were 10−5- 10−3 M for vitamin B1 in a NaOH solution and 5 × 10−6-10−3 M for vitamin B6 in an acetate buffer solution. The obtained detection limits were 5.34 × 10−6 M and 2.81 × 10−6 M for vitamin B1 and vitamin B6, respectively. The developed method is simple and rapid and it was successfully applied in the determination of the two vitamins in pharmaceuticals.

References

Aboul-Kasim, E. (2000). Anodic adsorptive voltammetric determination of the vitamin B1 (thiamine). Journal of Pharmaceutical and Biomedical Analysis, 22, 1047-1054. DOI: 10.1016/s0731-7085(99)00154-5.10.1016/S0731-7085(99)00154-5Search in Google Scholar

Ahmad, I., Mirza, T., Qadeer, K., Nazim, U., & Vaid, F. H. M. (2013). Vitamin B6: Deficiency diseases and methods of analysis. Pakistan Journal of Pharmaceutical Sciences, 26, 1057-1069.Search in Google Scholar

Antal, I. P., Bazel, Y. R., & Kormosh, Z. A. (2013). Electrochemical methods for determining group B vitamins. Journal of Analytical Chemistry, 68, 565-576. DOI: 10.1134/s10619 34813070034.Search in Google Scholar

AOAC International (2012). Guidelines for standard method performance requirements (Appendix F, pp. 1-17). Rockville, MD, USA: AOAC International.Search in Google Scholar

Arslan, A., & Hur, E. (2014). Electrochemical storage properties of polyaniline-, poly(N-methylaniline)- and poly(Nethylaniline)- coated pencil graphite electrodes. Chemical Papers, 68, 504-515. DOI: 10.2478/s11696-013-0475-9.10.2478/s11696-013-0475-9Search in Google Scholar

Balan, I., David, I. G., David, V., Stoica, A. I., Mihail ciuc, C., Stamatin, I., & Ciucu, A. A. (2011). Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. Journal of Electroanalytical Chemistry, 654, 8-12. DOI: 10.1016/j.jelechem.2011.02.002.10.1016/j.jelechem.2011.02.002Search in Google Scholar

Bás, B., Jakubowska, M., & Górski, Ł. (2011). Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta, 84, 1032-1037. DOI: 10.1016/j.talanta.2011.03.006.10.1016/j.talanta.2011.03.006Search in Google Scholar PubMed

Brahman, P. K., Dar, R. A., & Pitre, K. S. (2012). Adsorptive stripping voltammetric study of vitamin B1 at multi-walled carbon nanotube paste electrode. Arabian Journal of Chemistry. DOI: 10.1016/j.arabjc.2012.12.016 (in press).10.1016/j.arabjc.2012.12.016Search in Google Scholar

Brahman, P. K., Dar, R. A., & Pitre, K. S. (2013). DNAfunctionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sensors and Sctuators B, 177, 807-812. DOI: 10.1016/j.snb.2012.11.073.10.1016/j.snb.2012.11.073Search in Google Scholar

Brett, C. M. A., & Oliveira-Brett, A. M. (1993). Electrochemistry. Principles, methods and applications. Oxford, UK: Oxford University Press.Search in Google Scholar

Chen, Z., Chen, B., & Yao, S. Z. (2006). High-performance liquid chromatography/electrospray ionization-mass spectrometry for simultaneous determination of taurine and 10 watersoluble vitamins in multivitamin tablets. Analytica Chimica Acta, 569, 169-175. DOI: 10.1016/j.aca.2006.03.099.10.1016/j.aca.2006.03.099Search in Google Scholar

Cottica, S. M., Nozaki, J., Nakatani, H. S., Oliveira, C. C., de Souza, N. E., & Visentainer, J. V. (2009). Voltammetric determination of pyridoxine (vitamin B6) in drugs using a glassy carbon electrode modified with chromium(III) hexacyanoferrate( II). Journal of the Brazilian Chemical Society, 20, 496-501. DOI: 10.1590/s0103-50532009000300014.10.1590/S0103-50532009000300014Search in Google Scholar

David, I. G., Badea, I. A., & Radu, G. L. (2013). Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turkish Journal of Chemistry, 37, 91-100. DOI: 10.3906/kim-1203-49.10.3906/kim-1203-49Search in Google Scholar

David, I. G., Bizgan, A. M. C., Popa, D. E., Buleandra, M., Moldovan, Z., Badea, I. A., Tekiner, T. A., Basaga, H., & Ciucu, A. A. (2015). Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behavior on a disposable graphite electrode. Food Chemistry, 173, 1059-1065. DOI: 10.1016/j.foodchem.2014.10.139.10.1016/j.foodchem.2014.10.139Search in Google Scholar PubMed

Desai, P. B., Kotkar, R. M., & Srivastava, A. K. (2008). Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers. Journal of Solid State Electrochemistry, 12, 1067-1075. DOI: 10.1007/s10008-007-0435-9.10.1007/s10008-007-0435-9Search in Google Scholar

Duca, R. C., Badea, I. A., David, I. G., Delaforge, M., & Vladescu, L. (2010). Redox behaviour of zearalenone in various solvents. Analytical Letters, 43, 1287-1300. DOI: 10.1080/00032710903518708.10.1080/00032710903518708Search in Google Scholar

Ensafi, A. A., Heydari-Bafrooei, E., & Amini, M. (2012). DNA-functionalized biosensor for riboflavin based electrochemical interaction on pretreated pencil graphite electrode. Biosensensors and Bioelectronics, 31, 376-381. DOI: 10.1016/j.bios.2011.10.050.10.1016/j.bios.2011.10.050Search in Google Scholar PubMed

Ferreira, M., Varela, H., Torresi, R. M., & Tremiliosi-Filho, G. (2006). Electrode passivation caused by polymerization of different phenolic compounds. Electrochimica Acta, 52, 434-442. DOI: 10.1016/j.electacta.2006.05.025.10.1016/j.electacta.2006.05.025Search in Google Scholar

Fonseca, C. A., Vaz, G. C. S., Azevedo, J. P. A., & Semaan, F. S. (2011). Exploiting ion-pair formation for the enhancement of electroanalytical determination of pyridoxine (B6) onto polyurethane-graphite electrodes. Microchemical Journal, 99, 186-192. DOI: 10.1016/j.microc.2011.05.003.10.1016/j.microc.2011.05.003Search in Google Scholar

Ganjali, M. R., Norouzi, G. P., Shirvani-Arani, S., & Mohammadi, A. (2008). A novel method for fast determination of vitamin B6 by fast continuous cyclic voltammetry. Russian Journal of Electrochemistry, 44, 158-166. DOI: 10.1134/s1023193508020031.10.1134/S1023193508020031Search in Google Scholar

Ghasemi, J., Abbasi, B., Niazi, A., Nadaf, E., & Mordai, A. (2004). Simultaneous spectrophotometric multicomponent determination of folic acid, thiamine, riboflavin and pyridoxal by using double divisor-ratio spectra derivative-zero crossing method. Analytical Letters, 37, 2609-2623. DOI: 10.1081/al-200029389.10.1081/AL-200029389Search in Google Scholar

González, A. G., & Herrador, M. Á. (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends in Analytical Chemistry, 26, 227-238. DOI: 10.1016/j.trac.2007.01.009.10.1016/j.trac.2007.01.009Search in Google Scholar

Gu, H. Y., Yu, A. M., & Chen, H. Y. (2001). Electrochemical behavior and simultaneous determination of vitamin B2, B6 and C at electrochemically pretreated glassy carbon electrode. Analytical Letters, 34, 2361-2374. DOI: 10.1081/al-100107301.10.1081/AL-100107301Search in Google Scholar

Habibi, B., Phezhhan, H., & Pournaghi-Azar, M. H. (2010). Voltammetric determination of vitamin B6 (pyridoxine) using multi-wall carbon nanotube modified carbon-ceramic electrode. Journal of the Iranian Chemical Society, 7, S103- S112. DOI: 10.1007/bf03246189.10.1007/BF03246189Search in Google Scholar

Jiang, X. J., & Sun, T. (2007). Indication ion square wave voltammetric determination of thiamine and ascorbic acid. Analytical Letters, 40, 2589-2596. DOI: 10.1080/00032710701585206.10.1080/00032710701585206Search in Google Scholar

Kamruzzaman, M., Alam, A. M., Lee, S. H., & Dang, T. D. (2013). Chemiluminescence microfluidic system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol-AgNO3 reaction. Sensors and Actuators B, 185, 301-308. DOI: 10.1016/j.snb.2013.04.029.10.1016/j.snb.2013.04.029Search in Google Scholar

Khan, M. A.,Wabaidur, S. M., Kim,W. H., & Lee, S. H. (2008). Electrochemical method for determination of thiamine using modified glassy carbon electrode. Applied Chemistry, 12, 77-80.Search in Google Scholar

Kuralay, F., Vural, T., Bayram, C., Denkbas, E. B., & Abaci, S. (2011). Carbon nanotube-chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis. Colloids and Surfaces B, 87, 18-22. DOI: 10.1016/j.colsurfb.2011.03.030.10.1016/j.colsurfb.2011.03.030Search in Google Scholar PubMed

Litescu, S. C., David, I. G., Radu, G. L., & Aboul-Enein, H. Y. (2001). Voltammetric determination of coenzyme Q10 at a solid glassy carbon electrode. Instrumentation Science & Technology, 29, 109-116. DOI: 10.1081/ci-100103459.10.1081/CI-100103459Search in Google Scholar

Liu, S. Q., Sun, W. H., Li, L. C., Li, H., & Wang, X. L. (2012). Electrocatalytic oxidation and voltammetric determination of vitamin B6 by a ssDNA-modified electrode. International Journal of Electrochemical Science, 7, 324-337.10.1149/2.099203jesSearch in Google Scholar

Marszałł, M. L., Lebiedzi´nska, A., Czarnowski, W., & Szefer, P. (2005). High-performance liquid chromatography method for the simultaneous determination of thiamine hydrochloride, pyridoxine hydrochloride and cyanocobalamin in pharmaceutical formulations using coulometric electrochemical and ultraviolet detection. Journal of Chromatography A, 1094, 91-98. DOI: 10.1016/j.chroma.2005.07.091.10.1016/j.chroma.2005.07.091Search in Google Scholar PubMed

Mekonnen, A., Saini, R. C., Tadese, A., & Pal, R. (2014). Square wave voltammetric determination of pyridoxine in pharmaceutical preparations using cobalthexacyanoferrate modified carbon paste electrode. Journal of Chemical and Pharmaceutical Research, 6, 544-551.Search in Google Scholar

Norouzi, P., Ganjali, M. R., Daneshgar, P., & Mohammadi, A. (2007). Fast Fourier transform continuous cyclic voltammetry development as a highly sensitive detection system for ultra trace monitoring of thiamine. Analytical Letters, 40, 547-559. DOI: 10.1080/00032710600964874.10.1080/00032710600964874Search in Google Scholar

Norouzi, P., Mirzaei Garakani, T., Rashedi, H., Zamani, H. A., & Ganjali, M. R. (2010). Ultrasensitive flow-injection electrochemical method using fast Fourier transform square-wave voltammetry for detection of vitamin B1. International Journal of Electrochemical Science, 5, 639-652.Search in Google Scholar

Patrascu, D., David, I., David, V., Mihailciuc, C., Stamatin, I., Ciurea, J., Nagy, L., Nagy, G., & Ciucu, A. A. (2011). Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron(II) phthalocyanine modified muli-wall carbon nanotubes paste electrode. Sensors and Actuators B, 156, 731-736. DOI: 10.1016/j.snb.2011.02.027.10.1016/j.snb.2011.02.027Search in Google Scholar

Pournaghi-Azar, M. H., Dastangoo, H., & Ziaei, M. (2007). Electrocatalytic oxidation of pyridoxine (vitamin B6) on aluminum electrode modified by metallic palladium particles/ iron(III) hexacyanoferrate(II) film. Journal of Solid State Electrochemistry, 11, 1221-1227. DOI: 10.1007/s10008-007-0273-9.10.1007/s10008-007-0273-9Search in Google Scholar

Qu, W. Y., Wu, K. B., & Hu, S. S. (2004). Voltammetric determination of pyridoxine (vitamin B6) by use of a chemically-modified glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, 36, 631-635. DOI: 10.1016/j.jpba.2004.07.016.10.1016/j.jpba.2004.07.016Search in Google Scholar PubMed

Razmi, H., & Mohammad-Rezaei, R. (2010). Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochimica Acta, 55, 1814-1819. DOI: 10.1016/j.electacta. 2009.10.072.Search in Google Scholar

Shaidarova, L. G., Davletshina, L. N., & Budnikov, G. K. (2006). Flow-injection determination of water-soluble vitamins B1, B2 and B6 from the electrocatalytic response of a graphite electrode modified with a ruthenium(III) hexacyanoruthenate( II) film. Journal of Analytical Chemistry, 61, 502-509. DOI: 10.1134/s1061934806050133.10.1134/S1061934806050133Search in Google Scholar

Söderhjelm, J., & Lindquist, J. (1975). Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst, 100, 349-354. DOI: 10.1039/an9750000349.10.1039/an9750000349Search in Google Scholar PubMed

Tanase, I. G., David, I. G., Radu, G. L., Iorgulescu, E. E., & Litescu, S. (1998). Electrochemical determination of minocycline in pharmaceutical preparations. Analusis, 26, 175-179. DOI: 10.1051/analusis:1998130.10.1051/analusis:1998130Search in Google Scholar

Teixeira, M. F. S., Segnini, A., Moraes, F. C., Marcolino-Júnior, L. H., Fatibello-Filho, O., & Cavalheiro, É. T. G. (2003). Determination of vitamin B6 (pyridoxine) in pharmaceutical preparations by cyclic voltammetry at a copper(II) hexacyanoferrate( III) modified carbon paste electrode. Journal of the Brazilian Chemical Society, 14, 316-321. DOI: 10.1590/s0103-50532003000200021.10.1590/S0103-50532003000200021Search in Google Scholar

Teixeira, M. F. S., Marino, G., Dockal, E. R., & Cavalheiro, É. T. G. (2004) Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)-salen complex. Analytica Chimica Acta, 508, 79-85. DOI: 10.1016/j.aca.2003.11.046.10.1016/j.aca.2003.11.046Search in Google Scholar

Tyszczuk-Rotko, K. (2012). New voltammetric procedure for determination of thiamine in commercially available juices and pharmaceutical formulation using a lead film electrode. Food Chemistry, 134, 1239-1243. DOI: 10.1016/j.foodchem. 2012.03.017.Search in Google Scholar

Wan, Q. J., Yang, N. J., & Ye, Y. K. (2002). Electrochemical behavior of thiamine on self-assembled gold electrode and its square-wave voltammetric determination in pharmaceutical preparations. Analytical Sciences, 18, 413-416. DOI: 10.2116/analsci.18.413.10.2116/analsci.18.413Search in Google Scholar PubMed

Wang, M. L., Zhang, Y. Y., Xie, Q. J., & Yao, S. Z. (2005). In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxolon at gold electrode. Electrochimica Acta, 51, 1059-1068. DOI: 10.1016/j.electacta.2005.05.046.10.1016/j.electacta.2005.05.046Search in Google Scholar

Wu, J., Lei, C. X., Yang, H. F.,Wu, X. M., Shen, G. L., & Yu, R. Q. (2005). Ruthenium tris(2,2’)bipyridyl-modified oxidized boron-doped diamond electrode for the determination of vitamin B6 in the presence of vitamins B1 and B2. Sensors and Actuators B, 107, 509-516. DOI: 10.1016/j.snb.2004.11.009.10.1016/j.snb.2004.11.009Search in Google Scholar

Wu, Y. H., & Song, F. J. (2008). Voltammetric investigation of vitamin B6 at a glassy carbon electrode and its application in determination. Bulletin of the Korean Chemical Society, 29, 38-42. DOI: 10.5012/bkcs.2008.29.1.038.10.5012/bkcs.2008.29.1.038Search in Google Scholar

Zhang, Y. Z., & Wang, Y. H. (2011). Voltammetric determination of vitamin B6 at glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes. American Journal of Analytical Chemistry, 2, 194-199. DOI: 10.4236/ajac.2011.22022. 10.4236/ajac.2011.22022Search in Google Scholar

Received: 2014-10-31
Revised: 2014-12-18
Accepted: 2014-12-19
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
  2. An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
  3. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
  4. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
  5. Electrode and electrodeless impedance measurement for determination of orange juices parameters
  6. Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
  7. Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
  8. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
  9. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
  10. Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
  11. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
  12. Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
  13. Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
  14. Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0096/html
Scroll to top button