Home Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
Article
Licensed
Unlicensed Requires Authentication

Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles

  • Janakiraman Vivekanandan , Arunachalam Mahudeswaran , Xiao-Yan Tang , Sangamesh G. Kumbar and Pachanoor Subbaian Vijayanand EMAIL logo
Published/Copyright: March 27, 2015
Become an author with De Gruyter Brill

Abstract

Novel copolymers of poly(aniline-co-m-chloroaniline)-doped dodecylbenzenesulphonic acid (DBSA) with embedded silver nanoparticles were synthesised using the in situ chemical oxidative method. The structural properties of the copolymers were characterised using the UV-VIS and FTIR spectroscopic methods. The crystalline nature of the copolymer was demonstrated by way of the X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) revealed the presence of particle agglomerates measuring 50 nm to 100 nm on the surface of the nanocomposites. The electrical conductivity of the copolymer was dependent on the monomer composition and was found to be in the range of 10−2 S cm−1 to 10−6 S cm−1 with an increasing chloroaniline content and exhibiting improved solubility.

References

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424, 824-830. DOI: 10.1038/nature01937.10.1038/nature01937Search in Google Scholar

Billingham, N. C., Calvert, P. D., Foot, P. J. S., & Mohammad, F. (1987). Stability and degradation of some electrically conducting polymers. Polymer Degradation and Stability, 19, 323-341. DOI: 10.1016/0141-3910(87)90034-6.10.1016/0141-3910(87)90034-6Search in Google Scholar

Chai, H. J., Kim, J. W., & To, K. (1999). Electrorheological characteristics of semiconducting poly(aniline-co-oethoxyaniline) suspension. Polymer, 40, 2163-2166. DOI: 10.1016/s0032-3861(98)00418-2.10.1016/S0032-3861(98)00418-2Search in Google Scholar

Díaz, F. R., Sánchez, C. O., Del Valle, M. A., Torres, J. L., & Tagle, L. H. (2001). Synthesis, characterization and electrical properties of poly(2,5-, 2,3- and 3,5-dichloroaniline)s : Part II. Copolymers with aniline. Synthetic Metals, 118, 25-31. DOI: 10.1016/s0379-6779(00)00273-3.10.1016/S0379-6779(00)00273-3Search in Google Scholar

Dhanalakshmi, K., & Saraswati, R. (2001). Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). Journal of Materials Science, 36, 4107-4115. DOI: 10.1023/a:1017988015634.10.1023/A:1017988015634Search in Google Scholar

Fan, J., Wan, M., & Zhu, D. (1998). Synthesis and characterization of water-soluble conducting copolymer poly (anilineco- o-aminobenzenesulfonic acid). Journal of Polymer Science Part A: Polymer Chemistry, 36, 3013-3019. DOI: 10.1002/(SICI)1099-0518(199812)36:17<3013.Search in Google Scholar

Gok, A., Seri, B., & Talu, M. (2004). Synthesis and characterization of conducting substituted polyanilines. Synthetic Metals, 142, 41-48. DOI: 10.1016/j.synthmet.2003.07.002.10.1016/j.synthmet.2003.07.002Search in Google Scholar

Gruger, A., Novak, A., Regis, A., & Colomban, P. (1994). Infrared and Raman study of polyaniline Part II: Influence of ortho substituents on hydrogen bonding and UV/Vis-near- IR electron charge transfer. Journal of Molecular Structure, 328, 153-167. DOI: 10.1016/0022-2860(94)08368-1.10.1016/0022-2860(94)08368-1Search in Google Scholar

Gupta, M. C., & Umare, S. S. (1992). Studies on poly(omethoxyaniline). Macromolecules, 25, 138-142. DOI: 10. 1021/ma00027a023.10.1021/ma00027a023Search in Google Scholar

Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901-1903. DOI: 10.1126/science.1066541.10.1126/science.1066541Search in Google Scholar

Kang, D. P., & Yun, M. S. E. (1989). Chemical polymerization of 2-chloroaniline and 2-fluoroaniline by chromic acid. Synthetic Metals, 29, 343-348. DOI: 10.1016/0379-6779(89)90316-0.10.1016/0379-6779(89)90316-0Search in Google Scholar

Karyakin, A. A., Maltsev, I. A., & Lukachova, L. V. (1996). The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’ polyaniline synthesis. Journal of Electroanalytical Chemistry, 402, 217-219. DOI: 10.1016/0022-0728(95)04303-9.10.1016/0022-0728(95)04303-9Search in Google Scholar

Kim, Y. H., Foster, C., Chiang, J., & Heeger, A. J. (1989). Localized charged excitations in polyaniline: Infrared photoexcitation and protonation studies. Synthetic Metals, 29, 285-290. DOI: 10.1016/0379-6779(89)90308-1.10.1016/0379-6779(89)90308-1Search in Google Scholar

Koul, S., Chandra, R., & Dhawan, S. K. (2001). Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B: Chemical, 75, 151-159. DOI: 10.1016/s0925-4005(00)00685-7.10.1016/S0925-4005(00)00685-7Search in Google Scholar

Leclerc, M., Guay, J., & Dao, L. H. (1989). Synthesis and characterization of poly(alkylanilines). Macromolecules, 22, 649-653. DOI: 10.1021/ma00192a024.10.1021/ma00192a024Search in Google Scholar

Leite, F. L., Alves, W. F., Mir, M., Mascarenhas, Y. P., Herrmann, P. S. P., Mattoso, L. H. C., & Oliveira, O. N. (2008).Search in Google Scholar

TEM, XRD and AFM study of poly(o-ethoxyaniline) films: new evidence for the formation of conducting islands. Applied Physics A Material Science Process, 93, 537-542. DOI: 10.1007/s00339-008-4686-9.10.1007/s00339-008-4686-9Search in Google Scholar

Li, X. G., Huang, M. R., Li, F., Cai, W. J., Jin, Z., & Yang, Y. L. (2000). Oxidative copolymerization of 2- pyridylamine and aniline. Journal of Polymer Science Part A: Polymer Chemistry, 38, 4407-4418. DOI: 10.1002/1099-0518(20001215)38:24<4407.Search in Google Scholar

Li, X. G., Huang, M. R., Jin, Y., & Yang, Y. L. (2001). Soluble copolymers via oxidative polymerization of pyrimidylamine and anisidine. Polymer, 42, 3427-3435. DOI: 10.1016/s0032-3861(00)00716-3.10.1016/S0032-3861(00)00716-3Search in Google Scholar

Li, X. G., Huang, M. R., Duan, W., & Yang, Y. L. (2002). Novel multifunctional polymers from aromatic fiamines by oxidative polymerizations. Chemical Reviews, 102, 2925-3030. DOI: 10.1021/cr010423z.10.1021/cr010423zSearch in Google Scholar PubMed

Li, X. G., Huang, M. R., Feng, W., Zhu, M. F., & Chen, Y. M. (2004). Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine. Polymer, 45, 101-115. DOI: 10.1016/j.polymer.2003.10.085.10.1016/j.polymer.2003.10.085Search in Google Scholar

Li, X. G., Huang, M. R., Lu, Y. Q., & Zhu, M. F. (2005). Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. Journal of Materials Chemistry, 15, 1343-1352. DOI: 10.1039/b412587h.10.1039/b412587hSearch in Google Scholar

Lux, F., Hinrichsen, G., & Pohl, M. M. (1994). TEM evidence for the existence of conducting islands in highly conductive polyaniline. Journal of Polymer Science Part B: Polymer Physics, 32, 1957-1959. DOI: 10.1002/polb.1994.090321201.10.1002/polb.1994.090321201Search in Google Scholar

MacDiarmid, A. G. (2002). Synthetic metals: a novel role for organic polymers. Synthetic Metals, 125, 11-22. DOI: 10.1016/s0379-6779(01)00508-2.10.1016/S0379-6779(01)00508-2Search in Google Scholar

Mazerolles, L., Folch, S., & Colomban, P. (1999). Study of polyanilines by high-resolution electron microscopy. Macromolecules, 32, 8504-8508. DOI: 10.1021/ma991290a.10.1021/ma991290aSearch in Google Scholar

Mohan, Y. M., Lee, K., Premkumar, T., & Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48, 158-164. DOI: 10.1016/j.polymer.2006.10.045.10.1016/j.polymer.2006.10.045Search in Google Scholar

Moucka, R., Mrlik, M., Ilcikova, M., Spitalsky, Z., Kazantseva, N., Bober, P., & Stejskal, J. (2013). Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chemical Papers, 67, 1012-1019. DOI: 10.2478/s11696-013-0351-7.10.2478/s11696-013-0351-7Search in Google Scholar

Neoh, K. G., & Kang, E. T. (1990). Chemical copolymerization of aniline with halogen-substituted anilines. European Polymer Journal, 26, 403-407. DOI: 10.1016/0014-3057(90)90041-2.10.1016/0014-3057(90)90041-2Search in Google Scholar

Palaniappan, S. (2000). Chemical copolymerization of aniline with o-chloroaniline: thermal stability by spectral studies. Polymer International, 49, 659-662. DOI: 10.1002/1097-0126(200007)49:7<659.Search in Google Scholar

Rahman, N. A., Nikolaidis, M. G., Ray, S., Easteal, A. J., & Sejdic, J. T., (2010), Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(anilineco- benzoic acid). Synthetic Metals, 160, 2015-2022. DOI: 10.1016/j.synthmet.2010.07.031.10.1016/j.synthmet.2010.07.031Search in Google Scholar

Ravi Kumar, G., Vivekanandan, J., Mahudeswaran, A., & Vijayanand, P. S. (2013). Synthesis and characterization of novel poly(aniline-co-m-aminoacetophenone) copolymer nanocomposites using dodecylbenzene sulfonic acid as a soft template. Iranian Polymer Journal, 22, 923-929. DOI: 10.1007/s13726-013-0191-x.10.1007/s13726-013-0191-xSearch in Google Scholar

Roe, M. G., Ginder, J. M., Wigen, P. E., Epstein, A. J., Angelopoulous, M., & Macdiarmid, A. G. (1988). Photoexcitation of polarons and molecular excitons in emeraldine base. Physical Review Letters, 60, 2789-2792. DOI: 10.1103/Phys- RevLett.60.2789. Search in Google Scholar

Salavagione, H. J., Acevedo, D. F., Miras, M. C., Motheo, A. J., & Barbero, C. A. (2004). Comparative study of 2- amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. Journal of Polymer Science Part A: Polymer Chemistry, 42, 5587-5599. DOI: 10.1002/pola.20409.10.1002/pola.20409Search in Google Scholar

Schmid, G. (1995). Colloids and clusters. New York, NY, USA: VCH Press.Search in Google Scholar

Sharma, A. L., Saxena, V., Annapoorni, S., & Malhotra, B. D. (2001). Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). Journal of Applied Polymer Science, 81, 1460-1466. DOI: 10.1002/app.1572.10.1002/app.1572Search in Google Scholar

Snauwaert, P. H., Lazzaroni, R., Riga, J., & Verbist, J. (1986). Electronic structure of polyanilines: An XPS study of electrochemically prepared compounds. Synthetic Metals, 16, 245-255. DOI: 10.1016/0379-6779(86)90117-7g.Search in Google Scholar

Stejskal, J. (2013). Conducting polymer-silver composites. Chemical Papers, 67, 814-848. DOI: 10.2478/s11696-012-0304-6.10.2478/s11696-012-0304-6Search in Google Scholar

Swaruparani, H., Basavaraja, S., Basavaraja, C., Huh, D. S., & Venkataraman, A. (2010). A new approach to soluble polyaniline and its copolymers with toluidines. Journal of Applied Polymer Science, 117, 1350-1360. DOI: 10.1002/app.31745.10.1002/app.31745Search in Google Scholar

Travers, J. P., Sixou, B., Berner, D., Wolter, A., Rannou, P., Beau, B., Pépin-Donat, B., Barthet, C., Gulglielmi, M., Mermilliod, N., Gilles, B., Djurado, D., Attias, A. J., & Vautrin, M. (1999). Is granularity the determining feature for electron transport in conducting polymers? Synthetic Metals, 101, 359-362. DOI: 10.1016/s0379-6779(98)00354-3.10.1016/S0379-6779(98)00354-3Search in Google Scholar

Upadhyay, P. K., & Ahmad, A. (2009). Chemical synthesis, spectral characterization and thermal degradation of poly(aniline-co-m-chloroaniline). Analytical & Bioanalytical Electrochemistry, 1, 11-26.Search in Google Scholar

Vijayanand, P. S., Vivekanandan, J., Mahudeswaran, A., Ravi Kumar, G., & Anandarasu, R. (2015). Synthesis and characterization of poly(m-toluidine)- silver halide nanocomposites: thermal properties and its conducting behavior. Designed Monomers and Polymers, 18, 12-17. DOI: 10.1080/15685551. 2014.947548.Search in Google Scholar

Vivekanandan, J., Ponnusamy, V., Mahudeswaran, A., & Vijayanand, P. S. (2011). Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 3, 147-153.Search in Google Scholar

Wang, S. L., Wang, F. S., & Ge, X. H. (1986). Polymerization of substituted aniline and characterization of the polymers obtained. Synthetic Metals, 16, 99-104. DOI: 10.1016/0379-6779(86)90158-x.10.1016/0379-6779(86)90158-XSearch in Google Scholar

Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23, 758-764. DOI: 10.1021/ma00205a011.10.1021/ma00205a011Search in Google Scholar

Yan, Y., Liu, S., & Kimura, K. (2006). Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angewandte Chemie International Edition, 45, 5662-5665. DOI: 10.1002/anie.200601233. 10.1002/anie.200601233Search in Google Scholar PubMed

Received: 2014-9-15
Revised: 2014-12-10
Accepted: 2014-12-12
Published Online: 2015-3-27
Published in Print: 2015-7-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
  2. An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
  3. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
  4. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
  5. Electrode and electrodeless impedance measurement for determination of orange juices parameters
  6. Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
  7. Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
  8. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
  9. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
  10. Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
  11. Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
  12. Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
  13. Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
  14. Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0103/html
Scroll to top button