Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
-
Janakiraman Vivekanandan
Abstract
Novel copolymers of poly(aniline-co-m-chloroaniline)-doped dodecylbenzenesulphonic acid (DBSA) with embedded silver nanoparticles were synthesised using the in situ chemical oxidative method. The structural properties of the copolymers were characterised using the UV-VIS and FTIR spectroscopic methods. The crystalline nature of the copolymer was demonstrated by way of the X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) revealed the presence of particle agglomerates measuring 50 nm to 100 nm on the surface of the nanocomposites. The electrical conductivity of the copolymer was dependent on the monomer composition and was found to be in the range of 10−2 S cm−1 to 10−6 S cm−1 with an increasing chloroaniline content and exhibiting improved solubility.
References
Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424, 824-830. DOI: 10.1038/nature01937.10.1038/nature01937Search in Google Scholar
Billingham, N. C., Calvert, P. D., Foot, P. J. S., & Mohammad, F. (1987). Stability and degradation of some electrically conducting polymers. Polymer Degradation and Stability, 19, 323-341. DOI: 10.1016/0141-3910(87)90034-6.10.1016/0141-3910(87)90034-6Search in Google Scholar
Chai, H. J., Kim, J. W., & To, K. (1999). Electrorheological characteristics of semiconducting poly(aniline-co-oethoxyaniline) suspension. Polymer, 40, 2163-2166. DOI: 10.1016/s0032-3861(98)00418-2.10.1016/S0032-3861(98)00418-2Search in Google Scholar
Díaz, F. R., Sánchez, C. O., Del Valle, M. A., Torres, J. L., & Tagle, L. H. (2001). Synthesis, characterization and electrical properties of poly(2,5-, 2,3- and 3,5-dichloroaniline)s : Part II. Copolymers with aniline. Synthetic Metals, 118, 25-31. DOI: 10.1016/s0379-6779(00)00273-3.10.1016/S0379-6779(00)00273-3Search in Google Scholar
Dhanalakshmi, K., & Saraswati, R. (2001). Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). Journal of Materials Science, 36, 4107-4115. DOI: 10.1023/a:1017988015634.10.1023/A:1017988015634Search in Google Scholar
Fan, J., Wan, M., & Zhu, D. (1998). Synthesis and characterization of water-soluble conducting copolymer poly (anilineco- o-aminobenzenesulfonic acid). Journal of Polymer Science Part A: Polymer Chemistry, 36, 3013-3019. DOI: 10.1002/(SICI)1099-0518(199812)36:17<3013.Search in Google Scholar
Gok, A., Seri, B., & Talu, M. (2004). Synthesis and characterization of conducting substituted polyanilines. Synthetic Metals, 142, 41-48. DOI: 10.1016/j.synthmet.2003.07.002.10.1016/j.synthmet.2003.07.002Search in Google Scholar
Gruger, A., Novak, A., Regis, A., & Colomban, P. (1994). Infrared and Raman study of polyaniline Part II: Influence of ortho substituents on hydrogen bonding and UV/Vis-near- IR electron charge transfer. Journal of Molecular Structure, 328, 153-167. DOI: 10.1016/0022-2860(94)08368-1.10.1016/0022-2860(94)08368-1Search in Google Scholar
Gupta, M. C., & Umare, S. S. (1992). Studies on poly(omethoxyaniline). Macromolecules, 25, 138-142. DOI: 10. 1021/ma00027a023.10.1021/ma00027a023Search in Google Scholar
Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901-1903. DOI: 10.1126/science.1066541.10.1126/science.1066541Search in Google Scholar
Kang, D. P., & Yun, M. S. E. (1989). Chemical polymerization of 2-chloroaniline and 2-fluoroaniline by chromic acid. Synthetic Metals, 29, 343-348. DOI: 10.1016/0379-6779(89)90316-0.10.1016/0379-6779(89)90316-0Search in Google Scholar
Karyakin, A. A., Maltsev, I. A., & Lukachova, L. V. (1996). The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’ polyaniline synthesis. Journal of Electroanalytical Chemistry, 402, 217-219. DOI: 10.1016/0022-0728(95)04303-9.10.1016/0022-0728(95)04303-9Search in Google Scholar
Kim, Y. H., Foster, C., Chiang, J., & Heeger, A. J. (1989). Localized charged excitations in polyaniline: Infrared photoexcitation and protonation studies. Synthetic Metals, 29, 285-290. DOI: 10.1016/0379-6779(89)90308-1.10.1016/0379-6779(89)90308-1Search in Google Scholar
Koul, S., Chandra, R., & Dhawan, S. K. (2001). Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B: Chemical, 75, 151-159. DOI: 10.1016/s0925-4005(00)00685-7.10.1016/S0925-4005(00)00685-7Search in Google Scholar
Leclerc, M., Guay, J., & Dao, L. H. (1989). Synthesis and characterization of poly(alkylanilines). Macromolecules, 22, 649-653. DOI: 10.1021/ma00192a024.10.1021/ma00192a024Search in Google Scholar
Leite, F. L., Alves, W. F., Mir, M., Mascarenhas, Y. P., Herrmann, P. S. P., Mattoso, L. H. C., & Oliveira, O. N. (2008).Search in Google Scholar
TEM, XRD and AFM study of poly(o-ethoxyaniline) films: new evidence for the formation of conducting islands. Applied Physics A Material Science Process, 93, 537-542. DOI: 10.1007/s00339-008-4686-9.10.1007/s00339-008-4686-9Search in Google Scholar
Li, X. G., Huang, M. R., Li, F., Cai, W. J., Jin, Z., & Yang, Y. L. (2000). Oxidative copolymerization of 2- pyridylamine and aniline. Journal of Polymer Science Part A: Polymer Chemistry, 38, 4407-4418. DOI: 10.1002/1099-0518(20001215)38:24<4407.Search in Google Scholar
Li, X. G., Huang, M. R., Jin, Y., & Yang, Y. L. (2001). Soluble copolymers via oxidative polymerization of pyrimidylamine and anisidine. Polymer, 42, 3427-3435. DOI: 10.1016/s0032-3861(00)00716-3.10.1016/S0032-3861(00)00716-3Search in Google Scholar
Li, X. G., Huang, M. R., Duan, W., & Yang, Y. L. (2002). Novel multifunctional polymers from aromatic fiamines by oxidative polymerizations. Chemical Reviews, 102, 2925-3030. DOI: 10.1021/cr010423z.10.1021/cr010423zSearch in Google Scholar PubMed
Li, X. G., Huang, M. R., Feng, W., Zhu, M. F., & Chen, Y. M. (2004). Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine. Polymer, 45, 101-115. DOI: 10.1016/j.polymer.2003.10.085.10.1016/j.polymer.2003.10.085Search in Google Scholar
Li, X. G., Huang, M. R., Lu, Y. Q., & Zhu, M. F. (2005). Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. Journal of Materials Chemistry, 15, 1343-1352. DOI: 10.1039/b412587h.10.1039/b412587hSearch in Google Scholar
Lux, F., Hinrichsen, G., & Pohl, M. M. (1994). TEM evidence for the existence of conducting islands in highly conductive polyaniline. Journal of Polymer Science Part B: Polymer Physics, 32, 1957-1959. DOI: 10.1002/polb.1994.090321201.10.1002/polb.1994.090321201Search in Google Scholar
MacDiarmid, A. G. (2002). Synthetic metals: a novel role for organic polymers. Synthetic Metals, 125, 11-22. DOI: 10.1016/s0379-6779(01)00508-2.10.1016/S0379-6779(01)00508-2Search in Google Scholar
Mazerolles, L., Folch, S., & Colomban, P. (1999). Study of polyanilines by high-resolution electron microscopy. Macromolecules, 32, 8504-8508. DOI: 10.1021/ma991290a.10.1021/ma991290aSearch in Google Scholar
Mohan, Y. M., Lee, K., Premkumar, T., & Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48, 158-164. DOI: 10.1016/j.polymer.2006.10.045.10.1016/j.polymer.2006.10.045Search in Google Scholar
Moucka, R., Mrlik, M., Ilcikova, M., Spitalsky, Z., Kazantseva, N., Bober, P., & Stejskal, J. (2013). Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chemical Papers, 67, 1012-1019. DOI: 10.2478/s11696-013-0351-7.10.2478/s11696-013-0351-7Search in Google Scholar
Neoh, K. G., & Kang, E. T. (1990). Chemical copolymerization of aniline with halogen-substituted anilines. European Polymer Journal, 26, 403-407. DOI: 10.1016/0014-3057(90)90041-2.10.1016/0014-3057(90)90041-2Search in Google Scholar
Palaniappan, S. (2000). Chemical copolymerization of aniline with o-chloroaniline: thermal stability by spectral studies. Polymer International, 49, 659-662. DOI: 10.1002/1097-0126(200007)49:7<659.Search in Google Scholar
Rahman, N. A., Nikolaidis, M. G., Ray, S., Easteal, A. J., & Sejdic, J. T., (2010), Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(anilineco- benzoic acid). Synthetic Metals, 160, 2015-2022. DOI: 10.1016/j.synthmet.2010.07.031.10.1016/j.synthmet.2010.07.031Search in Google Scholar
Ravi Kumar, G., Vivekanandan, J., Mahudeswaran, A., & Vijayanand, P. S. (2013). Synthesis and characterization of novel poly(aniline-co-m-aminoacetophenone) copolymer nanocomposites using dodecylbenzene sulfonic acid as a soft template. Iranian Polymer Journal, 22, 923-929. DOI: 10.1007/s13726-013-0191-x.10.1007/s13726-013-0191-xSearch in Google Scholar
Roe, M. G., Ginder, J. M., Wigen, P. E., Epstein, A. J., Angelopoulous, M., & Macdiarmid, A. G. (1988). Photoexcitation of polarons and molecular excitons in emeraldine base. Physical Review Letters, 60, 2789-2792. DOI: 10.1103/Phys- RevLett.60.2789. Search in Google Scholar
Salavagione, H. J., Acevedo, D. F., Miras, M. C., Motheo, A. J., & Barbero, C. A. (2004). Comparative study of 2- amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. Journal of Polymer Science Part A: Polymer Chemistry, 42, 5587-5599. DOI: 10.1002/pola.20409.10.1002/pola.20409Search in Google Scholar
Schmid, G. (1995). Colloids and clusters. New York, NY, USA: VCH Press.Search in Google Scholar
Sharma, A. L., Saxena, V., Annapoorni, S., & Malhotra, B. D. (2001). Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). Journal of Applied Polymer Science, 81, 1460-1466. DOI: 10.1002/app.1572.10.1002/app.1572Search in Google Scholar
Snauwaert, P. H., Lazzaroni, R., Riga, J., & Verbist, J. (1986). Electronic structure of polyanilines: An XPS study of electrochemically prepared compounds. Synthetic Metals, 16, 245-255. DOI: 10.1016/0379-6779(86)90117-7g.Search in Google Scholar
Stejskal, J. (2013). Conducting polymer-silver composites. Chemical Papers, 67, 814-848. DOI: 10.2478/s11696-012-0304-6.10.2478/s11696-012-0304-6Search in Google Scholar
Swaruparani, H., Basavaraja, S., Basavaraja, C., Huh, D. S., & Venkataraman, A. (2010). A new approach to soluble polyaniline and its copolymers with toluidines. Journal of Applied Polymer Science, 117, 1350-1360. DOI: 10.1002/app.31745.10.1002/app.31745Search in Google Scholar
Travers, J. P., Sixou, B., Berner, D., Wolter, A., Rannou, P., Beau, B., Pépin-Donat, B., Barthet, C., Gulglielmi, M., Mermilliod, N., Gilles, B., Djurado, D., Attias, A. J., & Vautrin, M. (1999). Is granularity the determining feature for electron transport in conducting polymers? Synthetic Metals, 101, 359-362. DOI: 10.1016/s0379-6779(98)00354-3.10.1016/S0379-6779(98)00354-3Search in Google Scholar
Upadhyay, P. K., & Ahmad, A. (2009). Chemical synthesis, spectral characterization and thermal degradation of poly(aniline-co-m-chloroaniline). Analytical & Bioanalytical Electrochemistry, 1, 11-26.Search in Google Scholar
Vijayanand, P. S., Vivekanandan, J., Mahudeswaran, A., Ravi Kumar, G., & Anandarasu, R. (2015). Synthesis and characterization of poly(m-toluidine)- silver halide nanocomposites: thermal properties and its conducting behavior. Designed Monomers and Polymers, 18, 12-17. DOI: 10.1080/15685551. 2014.947548.Search in Google Scholar
Vivekanandan, J., Ponnusamy, V., Mahudeswaran, A., & Vijayanand, P. S. (2011). Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 3, 147-153.Search in Google Scholar
Wang, S. L., Wang, F. S., & Ge, X. H. (1986). Polymerization of substituted aniline and characterization of the polymers obtained. Synthetic Metals, 16, 99-104. DOI: 10.1016/0379-6779(86)90158-x.10.1016/0379-6779(86)90158-XSearch in Google Scholar
Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23, 758-764. DOI: 10.1021/ma00205a011.10.1021/ma00205a011Search in Google Scholar
Yan, Y., Liu, S., & Kimura, K. (2006). Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angewandte Chemie International Edition, 45, 5662-5665. DOI: 10.1002/anie.200601233. 10.1002/anie.200601233Search in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
- An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
- Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
- Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
- Electrode and electrodeless impedance measurement for determination of orange juices parameters
- Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
- Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
- Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
- Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
- Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
- Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
- Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
- Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
- Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines
Articles in the same Issue
- Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode
- An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites
- Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems
- Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies
- Electrode and electrodeless impedance measurement for determination of orange juices parameters
- Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy
- Electrosynthesis of poly(p-phenylene) and poly(p-phenylene/pyrrole) films under controlled humidity
- Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles
- Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate
- Newly synthesized indolizine derivatives – antimicrobial and antimutagenic properties
- Synthesis and insecticidal activity of anthranilic diamides with hydrazone substructure
- Effect of alkylated diphenylamine on thermal-oxidative degradation behavior of poly-α-olefin
- Novel pathways of interaction of maleic anhydride derivatives with phosphorus(III) compounds: synthesis and characterisation of N,N,N′,N′ -tetraethyl-2,3-diphenylbut-2-enediamide and 3-dihydrofuranylidene-4-phosphorylidene–oxolane-2,5,5′-trione
- Efficient method for the synthesis of polysubstituted 2,6-dicyanoanilines by one-pot three-component tandem reaction of malononitrile with α,β-unsaturated imines