Startseite Lebenswissenschaften Genetic structure of Apis mellifera carnica in Slovakia based on microsatellite DNA polymorphism
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Genetic structure of Apis mellifera carnica in Slovakia based on microsatellite DNA polymorphism

  • Matúš Šťastný EMAIL logo , Jaroslav Gasper und Miroslav Bauer
Veröffentlicht/Copyright: 29. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 72 Heft 11

Abstract

Carniolan honeybee (Apis mellifera carnica) is considered an endangered subspecies of Apis mellifera in Slovakia due to its illegal crossbreeding with allochthonous subspecies. Despite more than a century-long tradition of Slovak beekeeping, genetic research of Slovak honeybees has not yet been done. The aim of our study was to develop a molecular approach to characterize Carniolan honeybee population using polymorphic microsatellite markers. A total of 79 samples of Slovak Carniolan honeybee from 19 regions of Slovakia were analyzed together with 85 reference samples of Apis mellifera mellifera, Apis mellifera macedonica, Apis mellifera ligustica and Apis mellifera hybrid (Buckfast). Ten highly informative (PIC > 0.5) microsatellite markers running in two multiplex PCR reactions were used for molecular analysis of bees. The mean number of alleles per locus ranged from 4.6 (A. m. mellifera) to 11.5 (A. m. carnica). Bayesian and frequency-based methods implemented in software ‘GeneClass’ (v 2.0.h) have been used to assign individuals to populations. We were able to successfully assign 95% of individuals in actual sample size. After simulating 100,000 individuals using Bayesian Markov chain Monte-Carlo resampling, we correctly assigned 88% individuals to five tested populations. Population genetic structure was inferred through the Bayesian clustering method incorporated in software ‘Structure’ (v 2.3.4). Overall, 92% of the individuals were assigned to the same subspecies as originally declared. According to Structure analysis, Slovak population of A. m. carnica appears to be separated into two clusters, showing the relatively high level of gene flow from A. mellifera hybrid (Buckfast) and A. m. macedonica subspecies. It might be caused by rebuilding the Slovak population after colony losses using imported subspecies of the honeybee.

Acknowledgements

This work was supported by the Slovak Research and Development Agency (APVV-14-0043), Constantine the Philosopher University in Nitra (grant UGA VII/30/2016) and was performed during the realization of the project MARKERY No. 26220220190 supported by the Operational Programme Research and Development funded from the European Regional Development Fund.

References

Arranz J.J., Bayon Y. & Primitivo F.S. 2001. Differentiation among Spanish sheep breeds using microsatellites. Genetics Selection Evolution 33: 529–542. 10.1186/1297-9686-33-5-529Suche in Google Scholar PubMed PubMed Central

Borsuk B. & Olszewski K. 2010. Morphometric traits of Buckfast and Caucasian bees. J. Apicult. Sci. 54: 43–48.Suche in Google Scholar

Čápek J. 2015. Diverzita a vitalita včelstiev na Slovensku [Slovak honeybee diversity and vitality]. Dizertačná práca [Cand. Sci. (Biol.) Dissertation]. Slovenská pol’nohospodárska univerzita v Nitre [Slovak University of Agriculture in Nitra], Nitra, 129 pp.Suche in Google Scholar

Chlebo R. 2010. Changes in Slovakian Beekeeping. Bee World 87 (4): 66–70. 10.1080/0005772X.2010.11417370Suche in Google Scholar

Chlebo R. & Čápek J. 2016. Wing morphometry of Slovak lines of Apis mellifera carnica honeybee population Acta Fytotech. Zootech. 19(2): 41–44 10.15414/afz.2016.19.02.41-44Suche in Google Scholar

Chlebo R. & Kopernicky M. 2004. Queen breeding programme in Slovakia. Conservation of honeybee biodiversity in Europe Symposium, p. 43. In: Bernardinelli I. & Milani N. (eds), Proceedings of the 1st European Conference of Apidology, Udine, Italy, 184 pp. ISBN: 8886550995, 9788886550994Suche in Google Scholar

Ciampolini R., Cetica V. & Ciani E. 2006. Statistical analysis of individual assignment tests among four cattle breeds using fifteen STR loci. J. Anim. Sci. 84: 11–19. PMID: 1636148610.2527/2006.84111xSuche in Google Scholar PubMed

Cornuet J.M., Piry S., Luikart G., Estoup A. & Solignac M. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153 (4): 1989–2000.10.1093/genetics/153.4.1989Suche in Google Scholar PubMed PubMed Central

Čopik J. 2016. Lakťový index v Slovenskej populácii včely medonosnej [Cubital index of Slovak honeybee population]. Diploma Thesis. Slovak University of Agriculture in Nitra. Nitra, 42 pp.Suche in Google Scholar

Dall’Olio R., Marino A., Odesani M. & Moritz R.F. A. 2007. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 38: 207–217. 10.1051/apido:2006073Suche in Google Scholar

Estoup A., Garnery L., Solignac M. & Cornuet J.M. 1995. Microsatellite variation in honey bee (Apis mellifera L.) populations – hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140: 679–695.10.1093/genetics/140.2.679Suche in Google Scholar PubMed PubMed Central

Evanno G., Regnaut S. & Goudet J. 1995. Detecting the number of clusters of individuals using the software structure: a simulation study. Molec. Ecol. 14: 2611–2620. 10.1111/j.1365-294X.2005.02553.xSuche in Google Scholar PubMed

Fan B., Han J. & Chen S. 2008. Individual-breed assignments in caprine populations using microsatellitee DNA analysis. Small Ruminant Res. 75: 154–161. 10.1016/j.smallrumres.2007.09.007Suche in Google Scholar

FAO. 2007. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration. Commision on Genetic resources for Food and Agriculture, Food and Agriculture organisation of United Nations. Rome, 78 pp.Suche in Google Scholar

Francis R.M., Kryger P., Meixner M., Bouga M., Ivanova E., Andonov S., Berg S., Bienkowska M., Büchler R., Charistos L., Costa C., Dyrba W., Hatjina F., Panasiuk B., Pechhacker H., Kezić N., Korpela S., Le Conte Y., Uzunov A. & Wilde J. 2014. The genetic origin of honey bee colonies used in the COLOSS genotype-environment interactions experiment: a comparison of methods. J. Apicult. Res. 53: 188–204. 10.3896/IBRA.1.53.2.02Suche in Google Scholar

Garnery L., Cornuet J.-M. & Solignac M. 1992. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Molec. Ecol. 1 (3): 145–154. 10.1111/j.1365-294X.1992.tb00170.xSuche in Google Scholar PubMed

Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.-M., Solignac M. 1998. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) II. Microsatellite loci. Genetics Selection Evolution 30 (Suppl. 1): S49–S74.10.1186/1297-9686-30-S1-S49Suche in Google Scholar

Goetze G. 1959. Die Bedeutung des Flügelgeaders für züchterische Beuerteilung der Honigbiene. Zeitschr. Bienenforsch. 4: 141–148.Suche in Google Scholar

Hatjina F., Bienkowska M., Charistos L., Chlebo R., Costa C., Dražić M.M., Filipi J., Gregorc A., Ivanova E.N., Kezić N., Kopernicky J., Kryger P., Lodesani M., Lokar V., Mladenovic M., Panasiuk B., Petrov P.P., Rašic S., Skerl M.I., Vejsnćs F. & Wilde J. 2014. A Review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. J. Apicult. Res. 53: 337–363. 10.3896/IBRA.1.53.3.02Suche in Google Scholar

Klaudiny J., Bachanová K., Kohútová L., Dzúrová M., Kopernický J. & Majtán J. 2012. Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia 67: 200–211. 10.2478/s11756-011-0153-8Suche in Google Scholar

Kohútová L., Klaudiny J., Nádašdy R., Šedivá M., Kopernický J. & Majtán J. 2013. Identification and validation of reference genes for real time PCR expression studies in heads of nurse honeybees. Biologia. 68: 1211–1220. 10.2478/s11756-013-0267-2Suche in Google Scholar

Milner A. 2011. An introduction to understanding honeybees, their origins, evolution and diversity, Bee Improvement and Bee Breeding Association. http://www.bibba.com/origins_milner.php (accessed 15.02.2011).Suche in Google Scholar

Nedic N., Francis R. M. & Stanisavljevic L. 2014. Detecting population admixture in honey bees of Serbia. J. Apicult. Res. 53: 303–313. 10.3896/IBRA.1.53.2.12Suche in Google Scholar

Paetkau D., Calvert W., Stirling I. & Strobeck C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molec. Ecol. 4: 347–354. 10.1111/j.1365-294X.1995.tb00227.xSuche in Google Scholar

Paetkau D., Slade R., Burden M. & Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molec. Ecol. 13: 55–65. 10.1046/j.1365-294X.2004.02008.xSuche in Google Scholar

Piry S., Alapetite A., Cornuet J.M., Paetkau L., Baudouin L. & Estoup A. 2004. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Heredity 95: 536–539. 10.1093/jhered/esh074Suche in Google Scholar PubMed

Pritchard J.K., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PMCID: PMC14610910.1093/genetics/155.2.945Suche in Google Scholar PubMed PubMed Central

Queller D.C. & Goodnight K.F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258–275. 10.1111/j.1558-5646.1989.tb04226.xSuche in Google Scholar PubMed

Rannala B. & Mountain J.L. 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9197–9221. PMCID: PMC2311110.1073/pnas.94.17.9197Suche in Google Scholar PubMed PubMed Central

Ruttner F. 1988. Biogeography and Taxonomy of the Honeybee. Springer-Verlag, Berlin, 284 pp. ISBN: 9783642726491, 364272649610.1007/978-3-642-72649-1Suche in Google Scholar

Shaibi T., Lattorf H.M.G. & Moritz R.F.A. 2008. A microsatellite DNA toolkit for studying population structure in Apis mellifera. Molec. Ecol. Resour. 8 (5): 1034–1036. 10.1111/j.1755-0998.2008.02146.x.Suche in Google Scholar PubMed

Solignac M., Mougel F., Vautrin D., Monnerot M. & Cornuet J.-M. 2007. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol. 8 (4): R66. 10.1186/gb-2007-8-4-r66Suche in Google Scholar PubMed PubMed Central

Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M. & Cornuet J.-M. 2003. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Molec. Ecol. Notes 3 (2): 307–311. 10.1046/j.1471-8286.2003.00436.xSuche in Google Scholar

Smith D.R., Palopoli M.F., Taylor B.R., Garnery L., Cornuet J.-M., Solignac M. & Brown W.M. 1991. Geographical overlap of two mitochondrial genomes in Spanish honey bees (Apis mellifera iberica). J. Heredity 82: 96–100. PMID: 201369410.1093/oxfordjournals.jhered.a111062Suche in Google Scholar PubMed

Uzunov A., Meixner M.D., Kiprijanovska H., Andonov S., Gregorc A., Ivanova E., Bouga M., Dobi P., Büchler R., Francis R. & Kryger P. 2014. Genetic structure of Apis mellifera macedonica in the Balkan Peninsula based on microsatellite DNA polymorphism. J. Apicult. Res. 53 (2): 288–95. 10.3896/IBRA.1.53.2.10Suche in Google Scholar

Received: 2017-3-13
Accepted: 2017-10-14
Published Online: 2017-12-29
Published in Print: 2017-11-27

© 2017 Institute of Zoology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Zoology
  2. Identifying white spots on the roadmap of Late Pleistocene and Holocene palaeolimnology in Slovakia: Review and future directions
  3. Cellular and Molecular Biology
  4. Purification of small-size acidic proteoglycan-like domain of carbonic anhydrase IX fused with thioredoxine expressed in Escherichia coli for structural characterization
  5. Botany
  6. Functional and morphological traits of epiphytic lichens in the Western Carpathian oak forests reflect the influence of air quality and forest history
  7. Botany
  8. Clonostachys rosea associated with ponderosa and Coulter pine needles in Slovakia
  9. Botany
  10. First signs of old-growth structure and composition of an oak forest after four decades of abandonment
  11. Botany
  12. Factors responsible for the distribution of invasive plant species in the surroundings of railway areas. A case study from SE Poland
  13. Botany
  14. The role of lipids and polysaccharides in model root mucilage with implications for the surface activity of the rhizosphere
  15. Botany
  16. Physiological and proteomic changes in Zizania latifolia under chilling stress
  17. Botany
  18. Novel polymorphic EST-based microsatellite markers characterized in lettuce (Lactuca sativa)
  19. Cellular and Molecular Biology
  20. Identification of a HSP40 gene involved in planarian regeneration
  21. Zoology
  22. A new species of Bothropolys and a new record of Lithobius magnitergiferous (Lithobiidae) from the Qinghai-Tibet Plateau, China
  23. Zoology
  24. Myriapod (Chilopoda, Diplopoda) communities in hedgerows of upland agricultural landscape
  25. Zoology
  26. A new cockroach, with bipectinate antennae,(Blattaria: Olidae fam. nov.) further highlights the differences between the Burmite and other faunas
  27. Zoology
  28. Pre-winter larval activity and feeding behavior of Erebia aethiops and E. cassioides in Austrian Alps
  29. Zoology
  30. Genetic structure of Apis mellifera carnica in Slovakia based on microsatellite DNA polymorphism
  31. Zoology
  32. Amphibians in Czech zoological gardens — trends and implications for conservation
  33. Zoology
  34. Phenetic similarity of European golden jackal (Canis aureus moreoticus) populations from southeastern Europe based on craniometric data
  35. Celluar and Molecular Biology
  36. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes
  37. Zoology
  38. Changes in expression of neurotrophins and neurotrophic factors in the model of eosinophilic inflammation of the esophageal mucosa
  39. Celluar and Molecular Biology
  40. The growth inhibitory effects of garlic polysaccharide combined with cis-dichlorodiamine platinum on human HepG2 cells
  41. Erratum
  42. Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
Heruntergeladen am 31.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0149/html
Button zum nach oben scrollen