Startseite Pre-winter larval activity and feeding behavior of Erebia aethiops and E. cassioides in Austrian Alps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pre-winter larval activity and feeding behavior of Erebia aethiops and E. cassioides in Austrian Alps

  • Pavel Vrba EMAIL logo , Lenka Zapletalová , Michal Zapletal und Martin Konvička
Veröffentlicht/Copyright: 29. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 72 Heft 11

Abstract

Freshly hatched larvae represent critical but little studied phase in insect development. In butterflies inhabiting seasonally harsh environments, such as mountains of temperate regions, the larvae have only short time available for feeding before entering diapause. In the species rich genus Erebia, post-diapause larvae activate and feed exclusively in evening and late night hours, whereas the diurnal schedule and modifying effects of weather of pre-diapause larvae are practically unknown. Using captive observation with a transplant between alpine (2000 m) and mountain (800 m) altitudes, we studied larval activity of two species, alpine Erebia cassioides and lower-altitude E. aethiops, in Austrian Alps. Both species activated and fed both during day time and after the sunset, contrasting with the situation in post-diapause larvae. Both activity and feeding were strongly and species-specifically affected by temperature, cloudiness and humidity. Additionally, the loweraltitude E. aethiops, but not the alpine E. cassioides, restricted activity and feeding in the alpine altitude, indicating that some factors particular for alpine environments, possibly increased UV load or reduced air pressure, may limit the ability of this mountain species to develop above its vertical distribution limit.

Acknowledgements

We are grateful to Pavel Potocky for field assistance and Oldrich Nedved for fruitful discussions. The study was funded by the Grant agency of the Czech Republic (GA14-33733S).

References

Akaike H. 1974. New Look At Statistical Model Identification. IEEE T Automat Contr. 19: 716–723. 10.1109/TAC.1974.1100705Suche in Google Scholar

Ali A., Rashid M.A., Huang Q.Y. & Lei C.L. 2016. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. R 23: 17002–17007. 10.1007/s11356-016-6865-0Suche in Google Scholar PubMed

Cizek L., Fric Z. & Konvicka M. 2006. Host plant defences and voltinism in European butterflies. Ecol. Entomol. 31: 337– 344. 10.1111/j.1365-2311.2006.00783.xnSuche in Google Scholar

Dinca V., Cuvelier S., Zakharov E.V., Hebert P.D.N. & Vila R. 2010. Biogeography, ecology and conservation of Erebia oeme (Hubner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46: 486–498. 10.1080/00379271.2010.10697686.Suche in Google Scholar

Fartmann T. & Hermann G. 2006. Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa – von den Anfängen bis heute. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68 (3/4): 11–57.Suche in Google Scholar

Gauld I.D. 1986. Latitudinal gradients in ichneumonid speciesrichness in Australia. Ecol. Entomol. 11 (2): 155–161. 10.1111/j.1365-2311.1986.tb00290.xSuche in Google Scholar

Guven E., Pandir D. & Bas H. 2015. UV radiation-induced oxidative stress and DNA damage on Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Turk. Entomol. Derg-Tu 39: 23–33. 10.16970/ted.06717Suche in Google Scholar

Hodkinson I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80 (3): 489–513. 10.1017/S1464793105006767Suche in Google Scholar PubMed

Kleckova I. & Klecka J. 2016. Facing the Heat: Thermoregulation and behaviour of lowland species of a cold-dwelling butterfly genus, Erebia. PLoS ONE 11: e0150393. 10.1371/journal.pone.0150393Suche in Google Scholar PubMed PubMed Central

Kleckova I., Konvicka M. & Klecka J. 2014. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity J. Therm. Biol. 41: 50–58. 10.1016/j.jtherbio.2014.02.002Suche in Google Scholar PubMed

Konvička M., Beneš J., Čížek O., Kuras T. & Klečková I. 2016. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Entomol. 113: 295–301. 10.14411/eje.2016.036Suche in Google Scholar

Kuras T., Beneš J. & Konvička M. 2000. Differing habitat affinities of four Erebia species (Lepidoptera: Nymphalidae, Satyrinae) in the Hruby Jesenik Mts, Czech Republic. Biologia 55 (2): 169–175.Suche in Google Scholar

Kuras T., Beneš J., Konvička M. & Honč L. 2001. Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera Nymphalidae, Satyrinae). Atalanta 32 (1/2): 187–196.Suche in Google Scholar

Parmesan C., Root T.L. & Willig M.R. 2000. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81 (3): 443–450. 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2Suche in Google Scholar

Pena C., Witthauer H., Kleckova I., Fric Z. & Wahlberg N. 2015. Adaptive radiations in butterflies: evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biol. J. Linn. Soc. 116: 449–467. 10.1111/bij.12597Suche in Google Scholar

Polic D., Fiedler K., Nell C. & Grill A. 2014. Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. J. Insect Conserv. 18: 1153– 1161. 10.1007/s10841-014-9726-5Suche in Google Scholar

R Development Core Team 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/.Suche in Google Scholar

Sato Y., Tanaka T., Imafuku M. & Hidaka T. 1983. How does diurnal Apanteles kariyai parasitize and egress from nocturnal host larva? Kontyu 51: 128–139.Suche in Google Scholar

Scalercio S., Bonacci T., Mazzei A., Pizzolotto R. & Brandmayr P. 2014. Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. J. Insect Conserv. 18: 643–650. 10.1007/s10841-014-9669-xSuche in Google Scholar

Schmitt T. & Haubrich K. 2008. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol. Ecol. 17: 2194–2207. 10.1111/j.1365-294X.2007.03687.xSuche in Google Scholar PubMed

Schmitt T., Hewitt G.M. & Muller P. 2006. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J. Evol. Biol. 19: 108–113. 10.1111/j.1420-9101.2005.00980.xSuche in Google Scholar PubMed

Schmitt T., Louy D., Zimmermann E. & Habel J.C. 2016. Species radiation in the Alps: multiple range shifts caused diversification in Ringlet butterflies in the European high mountains. Org. Divers. Evol. 16: 791–808. 10.1007/s13127-016-0282-6Suche in Google Scholar

Slamova I., Klecka J. & Konvicka M. 2013. Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv. Divers. 6: 243–254. 10.1111/j.1752-4598.2012.00212.xSuche in Google Scholar

Sonderegger P. 2005. Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). Verlag Peter Sonderegger, Biel / Bienne, 712 pp..Suche in Google Scholar

Stuhldreher G. & Fartmann T. 2015. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112: 493–499. 10.14411/eje.2015.067Suche in Google Scholar

Stuhldreher G., Hermann G. & Fartmann T. 2014. Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol. Exp. Appl. 151: 270–279. 10.1111/eea.12193Suche in Google Scholar

Tennent W.J. 2008. A checklist of the satyrine genus Erebia (Lepidoptera) (1758-2006). Zootaxa 1900: 1–109.10.11646/zootaxa.1900.1.1Suche in Google Scholar

Tolman T. & Lewington R. 1997. Butterflies of Britain and Europe. HarperCollins Publishers Ltd., London, 320 pp. ISBN-10: 0007189915, ISBN-13: 9780007189915Suche in Google Scholar

Vrba P., Konvicka M. & Nedved O. 2012. Reverse altitudinal cline in cold hardiness among Erebia butterflies. Cryo-Lett. 33: 251–258. PMID: 22987236Suche in Google Scholar

Wipking W. & Mengelkoch C. 1994. Control of alternate-year flight activities in high-alpine Ringlet butterflies (Erebia, Satyridae) and Burnet moths (Zygaena, Zygaenidae) from temperate environments, pp. 313–347. 10.1007/978-94-017-1888-2_15. In: Danks H.V. (ed.), Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Kluwer Academic Publisher, Dordrecht, 365 pp. ISBN: 978-90-481-4401-3Suche in Google Scholar

Received: 2017-1-27
Accepted: 2017-9-21
Published Online: 2017-12-29
Published in Print: 2017-11-27

© 2017 Institute of Zoology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Zoology
  2. Identifying white spots on the roadmap of Late Pleistocene and Holocene palaeolimnology in Slovakia: Review and future directions
  3. Cellular and Molecular Biology
  4. Purification of small-size acidic proteoglycan-like domain of carbonic anhydrase IX fused with thioredoxine expressed in Escherichia coli for structural characterization
  5. Botany
  6. Functional and morphological traits of epiphytic lichens in the Western Carpathian oak forests reflect the influence of air quality and forest history
  7. Botany
  8. Clonostachys rosea associated with ponderosa and Coulter pine needles in Slovakia
  9. Botany
  10. First signs of old-growth structure and composition of an oak forest after four decades of abandonment
  11. Botany
  12. Factors responsible for the distribution of invasive plant species in the surroundings of railway areas. A case study from SE Poland
  13. Botany
  14. The role of lipids and polysaccharides in model root mucilage with implications for the surface activity of the rhizosphere
  15. Botany
  16. Physiological and proteomic changes in Zizania latifolia under chilling stress
  17. Botany
  18. Novel polymorphic EST-based microsatellite markers characterized in lettuce (Lactuca sativa)
  19. Cellular and Molecular Biology
  20. Identification of a HSP40 gene involved in planarian regeneration
  21. Zoology
  22. A new species of Bothropolys and a new record of Lithobius magnitergiferous (Lithobiidae) from the Qinghai-Tibet Plateau, China
  23. Zoology
  24. Myriapod (Chilopoda, Diplopoda) communities in hedgerows of upland agricultural landscape
  25. Zoology
  26. A new cockroach, with bipectinate antennae,(Blattaria: Olidae fam. nov.) further highlights the differences between the Burmite and other faunas
  27. Zoology
  28. Pre-winter larval activity and feeding behavior of Erebia aethiops and E. cassioides in Austrian Alps
  29. Zoology
  30. Genetic structure of Apis mellifera carnica in Slovakia based on microsatellite DNA polymorphism
  31. Zoology
  32. Amphibians in Czech zoological gardens — trends and implications for conservation
  33. Zoology
  34. Phenetic similarity of European golden jackal (Canis aureus moreoticus) populations from southeastern Europe based on craniometric data
  35. Celluar and Molecular Biology
  36. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes
  37. Zoology
  38. Changes in expression of neurotrophins and neurotrophic factors in the model of eosinophilic inflammation of the esophageal mucosa
  39. Celluar and Molecular Biology
  40. The growth inhibitory effects of garlic polysaccharide combined with cis-dichlorodiamine platinum on human HepG2 cells
  41. Erratum
  42. Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0143/html
Button zum nach oben scrollen