Startseite Lebenswissenschaften Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress

  • Aicha Gharbi EMAIL logo , Emilie Farcy , Alain Van Wormhoudt und Françoise Denis
Veröffentlicht/Copyright: 16. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 5

Abstract

Environmental stressors are known to play an important role in determining the distribution and abundance of intertidal species. Marine molluscs are particularly susceptible to changes in water temperature and salinity in inter-tidal zones. Ruditapes decussatus and Ruditapes philippinarum are marine intertidal clams, constantly exposed to salinity variations in their intertidal habitat. The goal of this study was to investigate whether these species would handle salinity increase as well as salinity decrease, given the general paucity of data on R. decussatus and R. philippinarum exposed to salinity changes. In this context, leucine aminopeptidase (LAP) activity changes following exposure to salinity change were investigated in clams from Tunisia and from Brittany. Samples of R. decussatus from Tunisia were maintained in salinity of l0%0, 20%0, 30%0, 45%0 and 55%0 for four weeks. Effects of salinity on LAP activity are also investigated in R. decussatus and in R. philippinarum from Brittany in salinities of 5%0, l0%0, 15%0, 17%0, 25%0, 30%0, 40%0, 45 %0 and 55%0. Three sets of experiments were conducted: Short (20 h), medium (96 h) and long-term (four weeks). During salinity trials, LAP activity of R. decussatus ranged from 0.07 ± 0.04 to 0.2 ± 0.05 μmol of paranitroanilide mg protein–1 min−1 and from 0.15 ± 0.015 to 0.56 ± 0.41 mg protein–1 min–1 for clams from Tunisia and from Brittany, respectively. In the R. philippinarum species, results showed the occurrence of higher activity levels, values ranged from 0.26 ± 0.11 to 1.04 ± 0.38 μmol of paranitroanilide mg protein–1 min–1. None of the salinity regimes gave significant differences in LAP ctivity in R. decussatus from Tunisia. Conclusion has also been deduced from experiments carried out on R. decussatus and R. philippinarum from Brittany. Results reported here suggest that LAP ctivity seems to be not affected by salinity changes in populations investigated. The study provided some useful insights into response of the bivalves R. decussatus and R. philippinarum to salinity stress and offered a number of candidate hypothesis as potential explanations for moderate changes in LAP activity.

Acknowledgements

The authors thank all people who contributed to this work. We gratefully acknowledge Mr M. Nejib Medhioub for his assistance during experiments.

References

Akberali H.B. 1978. Behaviour of Scrobicularia plana (da Costa) in water of various salinities. J. Exp. Mar. Biol. Ecol. 33 (3): 237-249. 10.1016/0022-0981(78)90011-4Suche in Google Scholar

Akberali H.B. & Davenport J. 1981. The responses of the bivalve Scrobicularia plana (da Costa) to gradual salinity changes. J. Exp. Mar. Biol. Ecol. 53 (2-3): 251-259. 10.1016/0022-0981(81)90024-1Suche in Google Scholar

Bayne B.L. 1973. The responses of three species of bivalve mollusc to declining oxygen tension at reduced salinity. Comp. Biochem. Physiol. Part A: Physiology 45 (3): 793-806. 10.1016/0300-9629(73)90082-0Suche in Google Scholar

Bayne B.L., Moore N.M & Koehn R.K. 1981. Lysosomes and the response by Mytilus edulis L. to an increase in salinity. Mar. Biol. Lett. 2 (4): 193-204.Suche in Google Scholar

Ben Aoun Z., Farhat F., Chouba L. & Hadj-Ali M.S. 2007. Investigation on possible chemical pollution of the Boughrara lagoon, south of Tunisia, by chemical wastes.Bull. Inst. Nat. Sci. Tech. Mer de Salammbô 34: 119-127.Suche in Google Scholar

Benrejeb-Jenhani A. & Romdhane M.S. 2002. Impact des perturbations anthropiques sur l’évolution du phytoplancton de la lagune de Boughrara, (TUNISIE). Bull. Inst. Nat. Sci. Tech. Mer de Salammbô 29: 65-75.Suche in Google Scholar

Bishop S.H. 1976. Nitrogen metabolism and excretion: regulation of intracellular and extracellular amino acid concentrations, pp. 414—431. In: Wiley M. (ed.), Estuarine Processes, Vol. I. Uses, Stresses and Adaptations to the Estuary, Conference Paper, Meeting of the Estuarine Research Conference, Galve-ston, Texas, 1975, 541 pp. ISBN: 1-48-324853-410.1016/B978-0-12-751801-5.50042-3Suche in Google Scholar

Breber P. 1985. On-growing of the carpet shell clam (Ruditapes decussatus) two years' experience in Venice lagoon. Aquacul-ture 44(1): 51-56. 10.1016/0044-8486(85)90041-9Suche in Google Scholar

Brent L.L. & Somero G.N. 2011.Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol. Ecol. 20(3): 517-529. 10.1111/j. 1365-294X.2010.04973.x.Suche in Google Scholar

Buroker N. 1983. Population genetics of the American oyster Crassostrea virginica along the Atlantic coast and the Gulf of Mexico. Mar. Biol. 75 (1): 99-112. 10.1007/BF00392635Suche in Google Scholar

Caruso G. & Zaccone R. 2000. Estimates of leucine aminopepti-dase activity in different marine and brackish environments. J. Appl. Microbiol. 89(6): 951-959. 10.1046/j.1365-2672.2000.01198.xSuche in Google Scholar

Deaton L.E. 2001 Hyperosmotic volume regulation in the gills of the ribbed mussel, Geukensia demissa: rapid accumulation of betaine and alanine J. Exp. Mar. Biol. Ecol. 260:185-197. 10.1016/S0022-0981(01)00237-4Suche in Google Scholar

Denis F. 1995. Génétique biochimique et moléculaire de la palourde japonaise Ruditapes philippinarum. Doctorat de l’Université de Bretagne Ouest, 145 pp.Suche in Google Scholar

De Zwaan A. & Wijsman T.C.M. 1976.Anaerobic metabolism in Bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. Part B: Comp. Biochem. 54 (3): 313-324. 10.1016/0305-0491(76)90247-9Suche in Google Scholar

Food and Agriculture Organization of the United Nations (FAO) 2013a. FAO Yearbook of Fishery Statistics: Summary, Tables. Fish Crustaceans, Mollusks, etc. Capture Production by groups of species. ftp://ftp.fao.org/fi/stat/summary/a1d. pdf.page 26.Suche in Google Scholar

Food and Agriculture Organization of the United Nations (FAO) 2013b. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production by species groups ftp://ftp.fao.org/fi/stat/summary/b-1.pdf.page 53.Suche in Google Scholar

Food and Agriculture Organization of the United Nations (FAO) 2013c. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production of fish, crustaceans, molluscs, etc., by principal species. ftp://ftp.fao.org/fi/stat/summary/ a-6.pdf.page 46.Suche in Google Scholar

Food and Agriculture Organization of the United Nations (FAO) 2013d. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production of fish, crustaceans, molluscs by principal producers. ftp://ftp.fao.org/fi/stat/summary/a-4.pdf.page 44.Suche in Google Scholar

Gardner J.P. & Kathiravetpillai G. 1997. Biochemical genetic variation at a leucine aminopeptidase (Lap) locus in blue (Mytilus galloprovincialis) and greenshell (Perna canalicu-lus) mussel population along a salinity gradient. Mar. Biol. 128(4): 619-625. 10.1007/s002270050128Suche in Google Scholar

Gardner J.P.A. & Palmer N.L. 1998. Size dependant, spatial and temporal genetic variation at a leucine aminopeptidase (LAP) locus among blue mussel (Mytilus galloprovincialis). Mar. Biol. 132:275-281.10.1007/s002270050393Suche in Google Scholar

Garthwaite R. 1986. The genetics of California populations of Geukensia demissa (Dillwin) (Mollusca): further evidence on the selective importance of leucine aminopeptidase variation in salinity acclimation. Biol. J. Linn. Soc. 28(4): 342—358. 10.1111/j. 1095-8312.1986.tb01763.xSuche in Google Scholar

Garthwaite R. 1989. Leucine aminopeptidase variation and fitness parameters in the estuarine bivalve Geunkensia demissa. Mar. Biol. 103(2): 183-192. 10.1007/BF00543346Suche in Google Scholar

Gharbi A., Zitari-Chatti R., Van Wormhoudt A., Dhraief M.N., Denis F., Said K. & Chatti N. 2011. Allozyme variation and population genetic structure in the carpet shell clam Ruditapes decussatus across the Siculo-Tunisian Strait. Biochem. Genet. 49 (11-12):788-805. 10.1007/s10528-011-9450-8Suche in Google Scholar

Gilles R. 1987. Volume regulation in cells of euryhaline invertebrates, pp. 205-247. 10.1016/S0070-2161(08)60372-X. In: Gilles R., Kleinzeller A. & Bolis L. (eds), Current Topics in Membranes and Transport Vol. 30, Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells. ISBN: 0-12-153330-1Suche in Google Scholar

Hamida L. 2004 Reproduction de la palourde Ruditapes decussatus, en milieu naturel (Sud Tunisie) et en milieu contrôlé (écloserie expérimentale): relation avec le systeme immuni-taire. These de doctorat de l’Université de Bretagne Occi-dentale, 120 pp.Suche in Google Scholar

Harzallah A. 2003. Transport de polluants dans la lagune de Biz-erte simulé par un modele de circulation de l’eau. Bull. Inst. Nat. Sci. Tech. Mer de Salambôo 30:121-133.Suche in Google Scholar

Hawkins A. J.S. & Day A. J. 1999. Metabolic interrelations underlying the physiological and evolutionary advantages of genetic diversity. Amer. Zool. 39:401-411.10.1093/icb/39.2.401Suche in Google Scholar

Hilbish T.J., Deaton L.E. & Koehn R.K. 1982. Effect of an allozyme polymorphism on regulation of cell volume. Nature 298:688-689.10.1038/298688a0Suche in Google Scholar

Huang H., Tanaka H., Hammock B.D. & Morisseau C. 2009. Novel and highly sensitive fluorescent assay for leucine aminopeptidases. Anal. Biochem. 391(1): 11-16. 10. 1016/j.ab.2009.05.004Suche in Google Scholar

Kim W.S., Huh H.T., Huh S.H. & Lee T.W.2001. Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia : Veneridae). Mar. Biol. 138(1): 157-162. 10.1007/s002270000430Suche in Google Scholar

Koehn R.K. 1978. Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics, pp. 51—72. In: Brussard P. (ed.), Ecological Genetics: The Interface, Springer Verlag, N.Y., 248 pp. ISBN: 978-1-4612-6332-6. 10.1007/978-1-4612-6330-2Suche in Google Scholar

Koehn R.K. & Hilbish J. 1987. The adaptive importance of genetic variation. Amer. Sci. 75 (2): 134-141.Suche in Google Scholar

Koehn R.K. & Immermann F. 1981. Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. I. Dependence of enzyme activity on season, tissue, and genotype. Biochem. Genet. 19(11): 1115-1142. 10.1007/BF0048 4569Suche in Google Scholar

Koehn R.K., Milkman R. & Mitton J.B. 1976. Population genetics of marine pelecypods. IV Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30(1): 2-32. 10.2307/2407669Suche in Google Scholar

Koehn R.K. & Mitton J.B. 1972. Population genetics of marine pelecypods. I. Ecological heterogeneity and evolutionary strategy at an enzyme locus. Am. Nat. 106 (947):47—56. 10/1086/282750Suche in Google Scholar

Koehn R.K., Newell R.I.E. & Irnmermann F. 1980. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc. Natl. Acad. Sci. USA 77(9): 5385-5389. 10.1073/pnas.77.9.5385Suche in Google Scholar

Koehn R.K. & Siebenaller J.F. 1981. Biochemical studies of arninopeptidase polymorphism in Mytilus edulis. II. Dependence of reaction rate on physical factors and enzyme concentration. Biochem. Genet. 19(11): 1143-1161. 10.1007/BF00484570Suche in Google Scholar

Lowry O., Rosebrough N.J., Farr A.L. & Randell R.S. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193(1): 265-275. PMID: 1490771310.1016/S0021-9258(19)52451-6Suche in Google Scholar

Mangum C. & Towle D. 1977. Physiological adaptation to unstable environments. Amer. Scientist 65 (1): 67—75. PMID: 842933Suche in Google Scholar

Michinina S.R. & Rebordinos L. 1997. Genetic differentiation in marine and estuarine populations of Crassostrea angulata. Mar. Ecol. Prog. Ser. 154:167-174.10.3354/meps154167Suche in Google Scholar

Moore M.N., Koehn R.K. & Bayne B.L. 1980. Leucine aminopeptidase (aminopeptidase-1), N-acetyl-beta-hexosaminidase and lysosomes in the mussel, Mytilus edulis L., in response to salinity changes. J. Exp. Zool. 214(3): 239-249. 10. 1002/jez. 1402140302Suche in Google Scholar

Moraga D. 1984. Polymorphisme enzymatique de populations na-turelles et expérimentales de la palourde européennes (Ruditapes decussatus). These de doctorat de l’Université de Bretagne Occidentale, 114 pp.Suche in Google Scholar

National Research Council of the National Academies 2010. Ecosystem Concepts for Sustainable Bivalve Mariculture. National Academies Press, Washington DC, 190 pp. 10.17226/12802. ISBN: 978-0-309-38486-5Suche in Google Scholar

Nirchio M., Pérez J. & Cequea H. 1991. Allozyme variation of Lap loci in Crassostrea rhizophorae in relation to temperature and/or salinity. Scientia Marina 55(4): 563—587.Suche in Google Scholar

Pierce S.K. 1971. Volume regulation and valve movements by marine mussels. Comp. Biochem. Physiol. Part A: Physiology 39 (1): 103-117. 10.1016/0300-9629(71)90350-1Suche in Google Scholar

Rose R.L. 1984. Genetic variation in the oyster, Crassostrea vir-ginica (Gmelin), in relation to environmental variation. Estuaries 7 (2): 128-132. 10.2307/1351766Suche in Google Scholar

Schoffeniels E. 1976. Adaptations with respect to salinity. Biochem. Soc. Symp. 41:179-204. PMID: 788717Suche in Google Scholar

Shurova N.M. 2001. Influence of Salinity on the Structure and the State of Bivalve Mytilus galloprovincialis populations. Russ. J. Mar. Biol. 27(3): 151-155. 10.1023/A: 1016713401 707Suche in Google Scholar

Skalamera J.P., Renaud F., Raymond M. & De Meefts T. 1999. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178:251-258. 10.3354/meps178251Suche in Google Scholar

Somero G.N. & Bowlus R.D. 1983. Osmolyte and metabolic end products of mollusks: the design of compatible solute systems, pp. 77-100. In: Hochachka P.W. (ed.), The Mollusca. Environmental Biochemistry and Physiology Vol. 2, Academic Press, New York, 362 pp. ISBN: 0-12-751402-3Suche in Google Scholar

Tomanek L. & Helmuth B. 2002. Physiological Ecology of Rocky Intertidal Organisms: A Synergy of Concepts. Integ. Comp. Biol. 42(4): 771-775. 10.1093/icb/42.4.771.Suche in Google Scholar PubMed

Veiga M.P.T., Gutierre S.M.M., Castellano G.C. & Freire C.A. 2015. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): behaviour and maintenance of tissue water content. J. Mollus. Stud. 82(1): 154-160. 10.1093/mollus/eyv044Suche in Google Scholar

Venier P., De Pittŕ C., Bernante F., Varotto L., De Nardi B., Bovo G., Roch P., Novoa B., Figueras A., Pallavicini A. & Lanfranchi G. 2009. MytiBase: a knowledge base of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics 10: 72. 10.1186/1471-2164-10-72.Suche in Google Scholar PubMed PubMed Central

Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D. & Somero G.N. 1982. Living with water stress: evolution of osmolyte systems. Science 217 (4566):1214-1222. 10.1126/sci-ence.7112124Suche in Google Scholar

Young J.P.W., Koehn R.K. & Arnheim N. 1979. Biochemical characterization of “Lap”, a polymorphic aminopeptidase from the blue mussel Mytilus edulis. Biochem. Genet. 17(3): 305-323. 10.1007/BF00498971Suche in Google Scholar PubMed

Zhao X., Yu H., Kong L. & Li Q. 2012. Transcriptomic Responses to Salinity Stress in the Pacific Oyster Crassostrea gigas. PLoS One 7 (9): e46244. 10.1371/journal.pone.0046244Suche in Google Scholar PubMed PubMed Central

Van Horn J. & Tolley S.G. 2009. Acute response of the estuarine crab Eurypanopeus depressus to salinity and desiccation stress. J. Crustacean Biol. 29 (4): 556-561. 10.1651/08-3123.1Suche in Google Scholar

Received: 2016-6-26
Accepted: 2016-5-5
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Botany, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. A broad host range food-grade cloning vector for lactic acid bacteria
  3. Cellular and Molecular Biology
  4. Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
  5. Cellular and Molecular Biology
  6. Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
  7. Cellular and Molecular Biology
  8. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
  9. Cellular and Molecular Biology
  10. Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
  11. Cellular and Molecular Biology
  12. Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
  13. Botany
  14. The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
  15. Botany
  16. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
  17. Botany
  18. Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
  19. Zoology
  20. First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
  21. Zoology
  22. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
  23. Zoology
  24. Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
  25. Zoology
  26. Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
  27. Zoology
  28. Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
  29. Zoology
  30. Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
  31. Cellular and Molecular Biology
  32. Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0072/pdf?lang=de
Button zum nach oben scrollen