Home Life Sciences The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
Article
Licensed
Unlicensed Requires Authentication

The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia

  • Peter Baláži EMAIL logo and Richard Hrivnák
Published/Copyright: June 16, 2016
Become an author with De Gruyter Brill

Abstract

Our study provides new knowledge about macrophyte assemblages and environmental variables of Slovak drainage and irrigation canals. The canal system, comprising ca. 15% of all flows in Slovakia, is one of the oldest in Central Europe. This information represents a first step toward exploitation of macrophytes as an obligatory biological quality element for the assessment of ecological potential according to the requirements of the Water Framework Directive. Among 61 canals studied, a total of 85 aquatic plant species (35 hydrophytes, 16 amphiphytes and 34 helophytes) were recorded during the years 2012–2014, including three neophytes and 18 threatened species. Physico-chemical variables explained the highest proportion of species variability, whilst hydromorphological variables and landscape variables were much less significant. Chemical oxygen demand, ammonium nitrogen, electrical conductivity, water pH, flow velocity and water depth were identified as most important drivers of species composition of aquatic macrophytes and explained 21.1% of the variability. The CCA results revealed differences in species composition of canals reflecting the geographical origin and environmental conditions as well, relating to South-Eastern and South-Western Slovakia. In conclusion, macrophytes in drainage and irrigation canals are able to reflect several environmental variables and might provide valuable information for bioindication in assessing the ecological potential.

Acknowledgements

This study was supported by the projects “Monitoring and status assessment” (Cohesion Fund Project No. 24110110001) and “Monitoring and status assessment – II. phase” (Cohesion Fund Project No. 24110110158). The authors would like to thank Dr. Dáša Hlúbiková for valuable comments and to all participants from Slovak Water Management Enterprise, who cooperated in sampling and analyzing of physico-chemical variables. The authors also thank the anonymous reviewer for having provided useful comments and suggestions on a previous version of the manuscript.

References

Armitage P.D., Szoszkiewicz K., Blackburn J.H. & Nesbitt I. 2003. Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv. 13: 165–185.10.1002/aqc.549Search in Google Scholar

Baláži P., Tóthová L., Oťaheľová H., Hrivnák R. & Mišíková K. 2011. Checklist of taxa examined at localities monitored in the Slovak surface water bodies–macrophytes. Acta Envir. Univ. Comenianae (Bratislava), 19 (1): 5–89.Search in Google Scholar

Baláži P., Hrivnák R. & Oťaheľová H. 2014. The relationship between macrophyte assemblages and selected environmental variables in reservoirs of Slovakia examined for the purpose of ecological assessment. Pol. J. Ecol. 62: 541–558.10.3161/104.062.0313Search in Google Scholar

Baláži P. & Hrivnák R. 2015. Bryophytes and macro-algal growths as a part of macrophyte monitoring in rivers used for ecological assessment. Knowl. Manag. Aquatic Ecosyst. 416, 19.10.1051/kmae/2015015Search in Google Scholar

Biggs J., Williams P., Whitfield M., Nicolet P., Brown C., Hollis J., Arnold D. & Pepper T. 2007. The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agric. Ecosyst. Environ. 122: 137–148.10.1016/j.agee.2006.11.013Search in Google Scholar

Bornette G. & Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci. 73: 1–14.10.1007/s00027-010-0162-7Search in Google Scholar

Cabecinha E., Cortes R., Pardal M. & Cabral J.A. 2009. A Stochastic Dynamic Methodology (StDM) for reservoir’s water quality management: validation of a multi-scale approach in a south European basin (Douro, Portugal). Ecol. Indic. 9: 329–345.10.1016/j.ecolind.2008.05.010Search in Google Scholar

CEN, 2003. European Standard EN 14 184 – Water quality. Guidance standard for the surveying of aquatic macrophytes in running waters. European Committee for Standardization, Brussels, 14 pp.Search in Google Scholar

Clarke K.R. 1993. Non-parametric multivariete analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.10.1111/j.1442-9993.1993.tb00438.xSearch in Google Scholar

Clarke K.R. & Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth, UK, 192 pp.Search in Google Scholar

Combroux I. & Bornette G. 2004. Effects of two types of disturbance on seed-bank and their relationship with established vegetation. J. Veg. Sci. 15: 13–20.10.1111/j.1654-1103.2004.tb02232.xSearch in Google Scholar

Chytrý M. (ed.) 2011. Vegetace České republiky 3. Vodní a mokřadní vegetace. Academia, Praha, 828 pp.Search in Google Scholar

Chytrý M., Tichý M., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.10.1111/j.1654-1103.2002.tb02025.xSearch in Google Scholar

Davies B.R., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. 2008a. Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agr. Ecosyst. Environ. 125: 1–8.10.1016/j.agee.2007.10.006Search in Google Scholar

Davies B.R., Biggs J., Williams P.J., Lee J.T. & Thompson S. 2008b. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597: 7–17.10.1007/978-90-481-9088-1_2Search in Google Scholar

Dodds W.K. & Gudder D.A. 1992. The ecology of Cladophora.J. Phycol. 28: 415–427.10.1111/j.0022-3646.1992.00415.xSearch in Google Scholar

Dorotovičová C. 2010. Aquatic macrophytes and the longitudinal floristic-ecological zonation of the Patinský canal. Acta Rer. Nat. Mus. Nat. Slov. 56: 45–58.Search in Google Scholar

Dorotovičová C. 2013. Man-made canals as a hotspot of aquatic macrophyte biodiversity in Slovakia. Limnologica 43: 277–287.10.1016/j.limno.2012.12.002Search in Google Scholar

Dorotovičová C. & Oťaheľová H. 2008. The influence of anthropogenic factors on the structure of aquatic macrophytes vegetation in the Hurbanovský canal (South Slovakia). Arch. Hydrobiol. 166, Large Rivers 18(1–2): 81–90.10.1127/lr/18/2008/81Search in Google Scholar

Dykyjová D., Košánová A., Husák Š. & Sládeková A. 1985. Macrophytes and water pollution of the Zlatá Stoka (Golden canal), Třeboň Biosphere Reserve, Czechoslovakia. Arch. Hydrobiol. 105: 31–58.10.1127/archiv-hydrobiol/105/1989/31Search in Google Scholar

Eliáš P. jr., Dítě D., Kliment J., Hrivnák R. & Feráková V. 2015. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70: 218–228.10.1515/biolog-2015-0018Search in Google Scholar

European Environmental Agency 2000. Coordination of Information on the Environment – Land Cover 2000.Search in Google Scholar

European Union 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327: 1–72.Search in Google Scholar

Ferreira M.T., Catarino L. & Moreira I. 1998. Aquatic weed assemblages in an Iberian drainage channel system and related environmental factors. Weed Res. 38: 291–300.10.1046/j.1365-3180.1998.00101.xSearch in Google Scholar

Gyalokay M. 1972. Ochrana žitného ostrova. Práce a štúdie 62. Výskumný ústav vodného hospodárstva, ALFA, Bratislava, 128 pp.Search in Google Scholar

Haslam S.M. 2006. River Plants (revised second edition). Forrest Text, Ceredigion, 438 pp.Search in Google Scholar

Hrivnák R., Oťaheľová H. & Valachovič M. 2007. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Pol. J. Ecol. 55: 717–729.Search in Google Scholar

Hrivnák R., Oťaheľová H., Kochjarová J. & Paľove-Balang P. 2013. Effect of environmental conditions on species composition of macrophytes – study from two distinct biogeographical regions of Central Europe. Knowl. Manag. Aquatic Ecosyst. 411, 9.10.1051/kmae/2013076Search in Google Scholar

Hrivnák R., Kochjarová J., Oťaheľová H., Paľove-Balang P., Slezák M. & Slezák P. 2014. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies – comparative approach from two central European regions. Ann. Limnol-Int. J. Lim. 50: 269–278.10.1051/limn/2014020Search in Google Scholar

Jahnátek Ľ., Alena J., Barbarič M., Bielik P., Bobovník M., Buday Š., Halászová K., Hrdá A., Illáš M., Jánošíková S., Jurík Ľ., Krištofíková J., Mihálek P., Mihina Š., Mindová P., Nagyová L., Németh F., Pícha E., Puškáč J., Sobocká J., Svetlík J., Tvrdá A., Vajs J. & Vargová J. 2014. Koncepcia revitalizácie hydromeliorarčných sústav na Slovensku. Ministerstvo pôdohospodárstva a rozvoja vidieka Slovenskej republiky. Bratislava, 51 pp. + Prílohy.Search in Google Scholar

Janauer G.A. 2003. Methods. In: Janauer G.A., Hale P. & Sweeting R. (eds), Macrophyte inventory of the river Danube: A pilot study. Arch. Hydrobiol. 14: 9–16.10.1127/lr/14/2003/9Search in Google Scholar

Janauer G.A. & Dokulil M. 2006. Macrophytes and Algae in Running Waters, pp. 89–109. In: Ziglio G., Siligardi M. & Flaim G. (eds), Biological Monitoring of Rivers. John Wiley & Sons, Ltd., Chichester.10.1002/0470863781.ch6Search in Google Scholar

John D.M., Whitton B.A. & Brook A.J. (eds.) 2003. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, 701 pp.Search in Google Scholar

Jursa M. & Oťaheľová H. 2005. Distribution of aquatic macrophytes in man-modified waterbodies of the Danube River in Bratislava region (Slovakia). Ekológia 24: 368–384.Search in Google Scholar

Koch E.W. 2001. Beyond light: physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.10.2307/1352808Search in Google Scholar

Kohler A., Vollrath H. & Beisl E. 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefäß-Makrophyten im Fließwassersystem Moosach (Münchner Ebene). Arch. Hydrobiol. 69: 333–365.Search in Google Scholar

Kohler A. & Janauer G.A. 1995. Zur Methodik der Untersuchungen von aquatischen Makrophyten in Fließgewässern, pp. 1–22. In: Steinberg C., Bernhardt H. & Klapper H. (eds), Handbuch Angewandte Limnologie, Ecomed Verlag, Lansberg-Lech.10.1002/9783527678488.hbal1995011Search in Google Scholar

Lacoul P. & Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14: 891–136.10.1139/a06-001Search in Google Scholar

Manolaki P. & Papastergiadou E. 2015. Environmental Factors Influencing Macrophytes Assemblages in a Middle-Sized Mediterranean Stream. River Res. Appl. 10.1002/rra. 2878.Search in Google Scholar

Marhold K. & Hindák F. 1998. Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, 688 pp.Search in Google Scholar

Medvecká J., Kliment J., Májeková J., Halada Ľ., Zaliberová M., Gojdičová E., Feráková V. & Jarolímek I. 2012. Inventory of alien species of Slovakia. Preslia 84: 257–309.Search in Google Scholar

Miklós L. & Hrnčiarová T. 2002. Atlas krajiny Slovenskej republiky. Ministerstvo životného prostredia Slovenskej republiky, Bratislava.Search in Google Scholar

Ministry of Environment of the Slovak Republic 2011. Water Plan of the Slovak Republic – Abbreviated version. 124 pp.Search in Google Scholar

Oťaheľová H. 1996. Elodea nuttallii (Planchon) St. John in Slovakia. Bull. Slov. Bot. Spoločn. 18: 84–85.Search in Google Scholar

Oťaheľová H. & Valachovič M. 2002. Effects of the Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube River (Slovakia). Preslia 74: 323–331.Search in Google Scholar

Oťaheľová H. & Valachovič M. 2003. Distribution of macrophytes in different water-bodies (habitats) influenced by the Gabčíkovo hydropower station (Slovakia) – present status. Arch. Hydrobiol. 147(1–2), Large Rivers14(1–2): 97–115.Search in Google Scholar

Oťaheľová H., Valachovič M. & Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37: 290–302.10.1016/j.limno.2007.07.003Search in Google Scholar

Papastergiadou E., Stefanidis K., Dorflinger G., Giannouris E., Kostrata K. & Manolaki P. 2016. Exploring biodiversity in riparian corridors of a Mediterranean island: Plant communities and environmental parameters in Cyprus. Plant Biosyst. 150: 91–103.10.1080/11263504.2014.941032Search in Google Scholar

Sabbatini M.R., Murphy K.J. & Irigoyen J.H. 1998. Vegetation– environment relationships in irrigation channel systems of southern Argentina. Aquat. Bot. 60: 119–133.10.1016/S0304-3770(97)00086-7Search in Google Scholar

Sipos V.K. 2001. Makrophyten-Vegetation und Standorte in eutrophen und humosen Fliessgewässern. Beispiele aus Südschweden und Ungarn. Ber. Inst. Landschafts und Pflanzenökologie, Universität Hohenheim, Stuttgart, 13: 1–185.Search in Google Scholar

Sipos V.K., Kohler A., Köder M. & Janauer G. 2003. Macrophyte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydriobiol. 147(1–2), Large Rivers14(1–2): 143–166.10.1127/lr/14/2003/143Search in Google Scholar

Sokal R.R. & Rohlf F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd ed. W.H. Freeman, New York. 887 pp.Search in Google Scholar

Szoszkiewicz K., Kayzer D., Staniszewski R. & Dawson H.F. 2010. Measures of central tendency of aquatic habitat parameters: Application to river macrophyte communities. Pol. J. Ecol. 8: 693–706.Search in Google Scholar

Szoszkiewicz K., Ciecierska H., Kolada A., Schneider S.C., Szwabinska M. & Ruszczynska J. 2014. Parameters structuring macrophyte communities in rivers and lakes – results from a case study in North-Central Poland. Knowl. Manag. Aquatic Ecosyst. 415, 08.10.1051/kmae/2014034Search in Google Scholar

StatSoft Inc. 2001. STATISTICA for Windows (Computer program Manual) Tulsa, OK: StatSoft Inc., 2300 Tulsa, http://www.stat.soft.com.Search in Google Scholar

ter Braak C.J.F. & Šmilauer P. 2012. CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power. Ithaca, NY, 496 pp.Search in Google Scholar

Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. & Sear D. 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115: 329–341.10.1016/S0006-3207(03)00153-8Search in Google Scholar

Willby N.J., Abernethy V.J. & Demars B.O.L. 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol. 43: 43–74.10.1046/j.1365-2427.2000.00523.xSearch in Google Scholar PubMed PubMed Central

Appendix 1 Occurrence of macrophytes in selected canals within three lowlands

All sites N = 61Danubian L. N = 34Záhorská L. N = 5East Slovak L. N = 22
Taxa listAbbrevGFCtFDFDFDFD
MACRO-ALGAL GROWTHS
Cladophora sp.CLA.SPXHY63.94.276.55.780.04.140.91.9
Enteromorpha intestinalis (L.) LinkENT.INTHY4.90.38.80.6
Hydrodictyon reticulatum (L.) LagerhHYD.RETHY1.60.14.50.2
Oscillatoria spOSC.SPXHY1.60.12.90.1
Spirogyra spSPI.SPXHY9.80.58.80.620.00.59.10.4
VASCULAR PLANTS
Acores calamus LACO.CALHE1.60.14.50.3
Agrostis stolonifera LAGR.STOHE1.60.120.01.4
Alisma lanceolatum WithALI.LANAM6.60.38.80.44.50.2
Alisma plantago-aquatica LALI.PLAAM24.61.45.90.259.13.4
Batrachium aquatile (L.) DumortBAT.AQUHYNT, §1.60.12.90.1
Batrachium circinatum (Sibth.) SpachBAT.CIRHY3.30.25.90.3
Berula erecta (Huds.) CovilleBER.EREAMLC32.82.352.93.840.01.8
Bidens frondosa LBID.FROHE14.80.85.90.331.81.7
Butomus umbellatus LBUT.UMBAMLC50.83.450.03.260.04.150.03.4
Callitriche cophocarpa SendtnCAL.COPHYLC1.60.14.50.3
Carex acuta LCAR.ACUHE31.12.338.22.880.06.09.10.6
Carex acutiformis EhrhCAR.ACTHE9.80.814.71.34.50.3
Carex buekii WimmCAR.BUEHELC1.60.12.90.1
Carex pseudocyperus LCAR.PSEHE6.60.42.90.213.60.8
Carex riparia CurtisCAR.RIPHE34.42.529.42.240.02.840.92.8
Ceratophyllum demersum LCER.DEMHY45.93.244.13.480.04.140.92.6
Ceratophyllum submersum LCER.SUBHYLC, §6.60.52.90.213.61.1
Eichhornia crassipes (Mart.) SolmsEIC.CRAHY3.30.29.10.5
Eleocharis acicularis (L.) Roem. et SchultELE.ACIHE1.60.14.50.2
Elodea canadensis MichxELO.CANHY1.60.12.90.2
Elodea nuttallii (Planch.) H. St. JohnELO.NUTHY13.10.720.61.04.50.3
Epilobium hirsutum LEPI.HIRHE14.80.78.80.327.31.3
Equisetum palustre LEQU.PALHE4.90.413.61.0
Fallopia japonica (Houtt.) Ronse DecrFAL.JAPHE3.30.12.90.14.50.1
Galium palustre LGAL.PALHE6.60.420.00.913.60.8
Glyceria maxima (Hartm.) HolmbGLY.MAXHE63.94.847.13.7100.07.381.86.0
Hydrocharis morsus-ranae LHYD.MORHY26.21.629.41.920.00.922.71.3
Impatiens qlandulifera RoyleIMP.GLAHE1.60.120.00.9
Impatiens noli-tangere LIMP.NOLHE1.60.14.50.2
Iris pseudacorus LIRI.PSEHE75.44.570.64.6100.05.577.34.2
Lemna gibba LLEM.GIBHY9.80.75.90.518.21.1
Lemna minor LLEM.MINHY78.75.273.55.1100.05.081.85.4
Lemna trisulca LLEM.TRIHY18.01.126.51.79.10.5
Lycopus europaeus LLYC.EURHE42.62.347.12.520.00.940.92.3
Lycopus exaltatus L. fLYC.EXAHELC6.60.48.80.64.50.3
Lysimachia nummularia LLYS.NUMHE23.01.411.80.640.01.836.42.6
Lythrum salicaria LLYT.SALHE44.32.129.41.577.33.5
Mentha aquatica LMEN.AQUAM24.61.441.22.44.50.2
Myosotis scorpioides LMYO.SCOAM55.73.764.74.060.03.240.93.2
Myosoton aquatica (L.) ScopMYO.AQUHE1.60.14.50.3
Myriophyllum spicatum LMYR.SPIHY14.81.023.51.64.50.3
Najas marina LNAJ.MARHY4.90.32.90.19.10.6
Najas minor AllNAJ.MINHYVU, §1.60.14.50.2
Nuphar lutea (L.) SmNUP.LUTHYVU, §34.42.629.41.940.03.240.93.5
Nymphaea alba LNYM.ALBHYVU11.50.811.80.820.01.49.10.7
Persicaria amphibia (L.) DelarbrePER.AMPAM4.90.22.90.140.01.4
Persicaria hydropiper LPER.HYDHE27.91.923.51.740.02.831.82.1
Persicaria lapathifolia (L.) GrayPER.LAPHE4.90.22.90.19.10.4
Persicaria maculosa GrayPER.MACHE1.60.12.90.1
Phalaris arundinacea LPHA.ARUHE47.53.244.12.8100.06.040.93.2
Phellandrium aquaticum LPHE.AQUAM18.01.011.80.631.81.9
Phragmites australis (Cay.) TrinPHR.AUSHE47.53.252.93.680.04.631.82.4
Potamogeton crispus LPOT.CRIHY31.12.044.13.120.00.913.60.7
Potamogeton lucens LPOT.LUCHY3.30.25.90.3
Potamogeton natans LPOT.NATHY1.60.24.50.5
Potamogeton nodosus PoirPOT.NODHYNT14.80.911.80.660.03.79.10.6
Potamogeton panormitanus BivPOT.PANHY1.60.12.90.1
Potamogeton pectinatus LPOT.PECHY34.42.441.23.220.00.927.31.7
Potamogeton perfoliatus LPOT.PERHYNT8.20.614.71.2
Taxa listAbbrevGFCtAll sites
N = 61Danubian L
N = 34Zahorska, L. East Slovak L
N = 5N = 22
FDFDFDFD
Ranunculus repens LRAN.REPHE31.12.032.42.020.00.931.82.3
Ranunculus sceleratus LRAN.SCEHE8.20.414.70.7
Rorippa amphibia (L.) BesserROR.AMPAM9.80.58.80.360.03.2
Rumex hydrolapathum HudsRUM.HYDHE29.51.629.41.340.02.327.31.8
Rumex maritimus LRUM.MARHE9.80.511.80.79.10.4
Sagittaria sagittifolia LSAG.SAGAMLC19.71.211.80.660.03.722.71.5
Salvinia natans (L.) AllSAL.NATHYLC, §13.10.617.60.99.10.4
Schoenoplectus lacustris (L.) PallaSCH.LACAM9.80.511.80.89.10.3
Schoenoplectus tabernaemontaniSCH.TABHENT1.60.12.90.1
(C.C.Gmel) Palla
Sium latifolium LSIU.LATAM1.60.12.90.1
Sparganium emersum RehmannSPA.EMEAM32.82.432.42.380.06.022.71.7
Sparganium erectum LSPA.EREAM19.71.98.81.020.01.436.43.4
Spirodela polyrhiza (L.) SchleidenSPI.POLHY45.92.444.12.460.02.845.52.5
Stratiotes aloides LSTR.ALOHYNT, §1.60.24.50.5
Symphytum officinale LSYM.OFFHE18.00.917.60.922.71.1
Trapa natans LTRA.NATHYLC, §4.90.313.60.8
Typha angustifolia LTYP.ANGHE32.81.932.41.640.01.431.82.6
Typha latifolia LTYP.LATHE54.13.444.12.460.02.368.25.1
Utricularia australis R. BrUTR.AUSHYLC8.20.611.80.94.50.3
Veronica anagallis-aquatica LVER.ANAAM21.31.432.42.29.10.5
Zannichellia palustris LZAN.PALHY1.60.14.50.2
Number of HY/AM/HE35/15/3527/15/2711/8/1627/11/29

Legend: GF – growth form, AM – amphiphytes, HE – helophytes, HY – hydrophytes; D – dominance, F – frequency; Ct – category of threat: LC – least concern, VU – vulnerable, NT – near threatened, §– species protected in Slovakia, endangered species are in bold and neophytes are underlined.

Received: 2016-3-1
Accepted: 2016-4-22
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Botany, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. A broad host range food-grade cloning vector for lactic acid bacteria
  3. Cellular and Molecular Biology
  4. Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
  5. Cellular and Molecular Biology
  6. Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
  7. Cellular and Molecular Biology
  8. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
  9. Cellular and Molecular Biology
  10. Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
  11. Cellular and Molecular Biology
  12. Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
  13. Botany
  14. The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
  15. Botany
  16. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
  17. Botany
  18. Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
  19. Zoology
  20. First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
  21. Zoology
  22. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
  23. Zoology
  24. Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
  25. Zoology
  26. Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
  27. Zoology
  28. Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
  29. Zoology
  30. Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
  31. Cellular and Molecular Biology
  32. Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0060/html
Scroll to top button