Startseite Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae

  • Shivtej P. Biradar , Niraj R. Rane , Tejas S. Patil , Rahul V. Khandare , Sanjay P. Govindwar und Pankaj K. Pawar EMAIL logo
Veröffentlicht/Copyright: 16. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 5

Abstract

Saccharomyces cerevisiae was able to degrade a highly toxic textile dye malachite green (MG) at 100 mg/L concentration. Although 99% decolourization was observed, a tremendous metabolic and oxidative stress was exerted on the cells. Ethanolic extracts of Terminalia chebula, Clitoria ternatea and Boerhaavia diffusa at a concentration of 1 mg/mL were independently supplied to S. cerevisiae cells to counter the stress. T. chebula, C. ternatea and B. diffusa extracts reduced the activities of glutathione peroxidase (67, 8 and 71%), superoxide dismutase (2, 7 and 16%) and catalase (16, 52 and 57%), respectively. Inductions in the activities of laccase (66, 82 and 50%), lignin peroxidase (35, 75 and 10%), NADH-DCIP reductase (43, 52 and 91%) and MG reductase (66, 126 and 117%) were observed respectively. Presence of dye (MG) extended the lag phase of the growth cycle of S. cerevisiae up to 36 h, which was observed to be restored to normal (4 h) after phytoextract supplementation. Scanning electron microscope imaging revealed the restored cell morphology upon exposure to plant extracts. The accumulation of reactive oxygen species (ROS) was observed to be 355% greater in cells exposed to MG, which was significantly reduced after phytoextracts augmentation when compared to control cells. Phytoextracts proved to be beneficial in increasing the viability of S. cerevisiae cells and reduced the intracellular ROS and nuclear damage. Inclusion of plant extracts during decolourization proved to be beneficial and protected the cells so that 20 treatment cycles could be run achieving significant removal of MG.

Acknowledgements

Authors are thankful to DBT, New Delhi, for funding in the form of DBT-SUK IPLS Program through grant No. BT/PR4572/INF/22/147/2012, SAP-DRS II Program, UGC New Delhi, for infrastructure facility and DST-PURSE program (Grant No.: SR/PURSE/2010) funded by DST, New Delhi, and funds for providing fellowship to one of the authors (SPB).

References

Allen S.A., Clark W., McCaffery J.M., Cai Z., Lanctot A., Slininger P. J., Liu Z.L. & Gorsich S.W. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 2.10.1186/1754-6834-3-2Suche in Google Scholar PubMed PubMed Central

An S.Y., Min S.K., Cha I.H., Choi Y.L., Cho Y.S., Kim C.H. & Lee Y.C. 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24: 1037-1040.10.1023/A:1015610018103Suche in Google Scholar

Asgher M. & Bhatti H.N. 2012. Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecol. Eng. 38:79-85.10.1016/j.ecoleng.2011.10.004Suche in Google Scholar

Balsano C. & Alisi A. 2009. Antioxidant effect of natural bioactive compounds. Curr. Pharm. Design 15:3063-3073.10.2174/138161209789058084Suche in Google Scholar PubMed

Bose B., Motiwale L. & Rao K.V.K. 2005. DNA damage and G2/M arrest in Syrian hamster embryo cells during Malachite green exposure are associated with elevated phosphorylation of ERK1 and JNK1. Cancer Lett. 230:260-270.10.1016/j.canlet.2005.01.001Suche in Google Scholar PubMed

Burhans W.C., Weinberger M., Marchetti M. A., Ramachandran L., D'Urso G. & Huberman J. A. 2003. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532:227-243.10.1016/j.mrfmmm.2003.08.019Suche in Google Scholar PubMed

Couto S.R. 2009. Dye removal by immobilised fungi. Biotechnol. Advan. 27:227-235.10.1016/j.biotechadv.2008.12.001Suche in Google Scholar PubMed

Culp S. & Beland F. 1996. Malachite green: a toxicological review. Int. J. Toxicol. 15:219-238.10.3109/10915819609008715Suche in Google Scholar

Deng D., Guo J., Zeng G. & Sun G. 2008. Decolorization of an-thraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int. Biodeterior. Biode-grad. 62: 263-269.10.1016/j.ibiod.2008.01.017Suche in Google Scholar

Dhamgaye S., Devaux F., Manoharlal R., Vandeputte P., Shah A.H., Singh A., Blugeon C., Sanglard D. & Prasad R. 2012. In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2. Antimicrob. Agents Chemother. 56: 495-506.10.1128/AAC.00574-11Suche in Google Scholar PubMed PubMed Central

Hauptmann P., Riel C., Kunz-Schughart L.A., Frohlich K.U., Madeo F. & Lehle L. 2006. Defects in N-glycosylation induce apoptosis in yeast. Mol. Microbiol. 59:765—778.10.1111/j.1365-2958.2005.04981.xSuche in Google Scholar

Jadhav J.P. & Govindwar S.P. 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315-323.10.1002/yea.1356Suche in Google Scholar

Jakubowski W., Bilinski T. & Bartosz G. 2000. Oxidative stress during aging of stationary cultures of the yeast Saccha-romyces cerevisiae. Free Radic. Biol. Med. 28:659—664.10.1016/S0891-5849(99)00266-XSuche in Google Scholar

Jones J.J. & Iii J.O.F. 2003. Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob. Agents Chemother. 47: 2323-2326.10.1128/AAC.47.7.2323-2326.2003Suche in Google Scholar

Khandare R.V., Kabra A.N., Awate A.V. & Govindwar S.P. 2013. Synergistic degradation of diazo dye Direct Red 5B by Por-tulaca grandiflora and Pseudomonas putida. Int. J. Environ. Sci. Technol. 10:1039-1050.10.1007/s13762-013-0244-xSuche in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.10.1016/S0021-9258(19)52451-6Suche in Google Scholar

Madeo F., Frohlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H. & Frohlich K.U. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757-767.10.1083/jcb.145.4.757Suche in Google Scholar

Mahudawala D.M., Redkar A.A., Wagh A., Gladstone B. & Rao K. V. 1999. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green: an agent of environmental importance. Indian J. Exp. Biol. 37:904—918.Suche in Google Scholar

Mukherjee S., Pawar N., Kulkarni O., Nagarkar B., Thopte S., Bhujbal A. & Pawar P. 2011. Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complement. Altern. Med. 11:38.10.1186/1472-6882-11-38Suche in Google Scholar

Panandiker A., Fernandes C. & Rao K.V. 1992. The cytotoxic properties of malachite green are associated with the increased demethylase, aryl hydrocarbon hydroxylase and lipid peroxidation in primary cultures of Syrian hamster embryo cells. Cancer Lett. 67: 93-101.10.1016/0304-3835(92)90131-ESuche in Google Scholar

Panandiker A., Fernandes C., Rao T.K. & Rao K. V. 1993. Morphological transformation of Syrian hamster embryo cells in primary culture by malachite green correlates well with the evidence for formation of reactive free radicals. Cancer Lett. 74: 31-36.10.1016/0304-3835(93)90040-GSuche in Google Scholar

Parekh J. & Chanda S. V. 2007. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk. J. Biol. 31:53-58.Suche in Google Scholar

Perrone G.G., Tan S.X. & Dawes I.W. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783:1354-1368.10.1016/j.bbamcr.2008.01.023Suche in Google Scholar

Ren S., Guo J., Zeng G. & Sun G. 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol. 72:1316-1321.10.1007/s00253-006-0418-2Suche in Google Scholar

Safarik I., Ptackova L. & Safarikova M. 2002. Adsorption of dyes on magnetically labeled baker's yeast cells. Eur. Cells Mater. 3: 52-55.Suche in Google Scholar

Sudova E., Machova J., Svobodova Z. & Vesely T. 2007. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Vet. Med. (Praha) 52:527-539.10.17221/2027-VETMEDSuche in Google Scholar

Vasdev K., Kuhad R.C. & Saxena R.K. 1995. Decolorization of triphenylmethane dyes by the bird's nest fungus Cyathus bul-leri. Curr. Microbiol. 30:269-272.10.1007/BF00295500Suche in Google Scholar

Wang J., Qiao M., Wei K., Ding J., Liu Z., Zhang K.Q. & Huang X. 2011. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achro-mobacter xylosoxidans MG1. J. Mol. Microbiol. Biotechnol. 20:220-227.10.1159/000330669Suche in Google Scholar

Wu J., Jung B.G., Kim K.S., Lee Y.C. & Sung N.C. 2009. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J. Environ. Sci. 21:960-964.10.1016/S1001-0742(08)62368-2Suche in Google Scholar

Abbreviations
ABTS

2,2-azino-bis-3-ethyl benzothiazoline-6-sulphonic acid

a.u

arbitrary unit

CFUs

colony forming units

DAPI

4',6-diamidino-2-phenylindole

H2DCF

2'7'-dichlorofluorescin

MG

malachite green

ROS

reactive oxygen species

SEM

scanning electron microscope.

Received: 2015-12-15
Accepted: 2016-4-14
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. A broad host range food-grade cloning vector for lactic acid bacteria
  3. Cellular and Molecular Biology
  4. Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
  5. Cellular and Molecular Biology
  6. Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
  7. Cellular and Molecular Biology
  8. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
  9. Cellular and Molecular Biology
  10. Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
  11. Cellular and Molecular Biology
  12. Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
  13. Botany
  14. The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
  15. Botany
  16. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
  17. Botany
  18. Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
  19. Zoology
  20. First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
  21. Zoology
  22. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
  23. Zoology
  24. Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
  25. Zoology
  26. Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
  27. Zoology
  28. Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
  29. Zoology
  30. Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
  31. Cellular and Molecular Biology
  32. Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Heruntergeladen am 14.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0069/html
Button zum nach oben scrollen