Startseite Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus

  • Harmandeep K. Randhawa , Kanwarpreet K. Hundal , Pallavi N. Ahirrao EMAIL logo , Sanjay M. Jachak und Hemraj S. Nandanwar EMAIL logo
Veröffentlicht/Copyright: 16. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 5

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium responsible for several infections in humans. The infections caused by this bacterial strain are difficult to treat due to the resistance of MRSA to clinically used antibiotics. Several medicinal plants extracts and their phytoconstituents have been reported to possess modulation and efflux pump inhibitory (EPI) activity against MRSA strains. Alpinia calcarata rhizomes have been reported to be used in Ayurveda for several ailments including fungal infections. Based on this information and in continuation with our efforts to discover EPIs from Indian medicinal plants, we describe EPI activity of flavonoids isolated from A. calcarata. Galangin and kaempferol showed ≥ 32-fold modulation in minimum inhibitory concentration (MIC) of ethidium bromide (EtBr) as well as norfloxacin in NorA-overexpressed S. aureus (SA-1199B) strain. Pinocembrin showed 32-fold modulation of EtBr MIC in SA-1199 strain, but not in SA-1199B and K1758 strains. A significant diference was not observed in the modulation of norfloxacin MIC by galangin in SA-1199 and SA-1199B strains, which may be due to non-specific nature of galangin as modulator or EPI. However, kaempferol modulated the MIC of EtBr as well as norfloxacin 64-fold and 32-fold, respectively. Also, the best modulatory effect of kaempferol was observed only in SA-1199B strain compared to two other strains. The EPI activity of kaempferol and galangin were found to be competitive with respect to verapamil. In dose-response assay, kaempferol at 31.25 μg/mL concentration was found to be better EPI by inhibiting NorA pump in SA-1199B strain and also demonstrated further confocal microscopy.

Acknowledgements

HKR thankful to CSIR’s network project (BSC-121) for the project fellowship, HSN is thankful to CSIR, India, for funding through its network project (BSC-121).

References

Arambewela L.S., Basnayake C.S., Serasinghe P., Tissera MS., Dias S. & Weerasekara D.R. 1995. Traditional Treatment in Sri Lanka for Chronic Arthritis. NARESA Printing Unit, Colombo, Sri Lanka.Suche in Google Scholar

Arambewela L.S.R. & Arawwawala L.D.A.M. 2005. Antioxidant activities of ethanolic and hot aqueous extracts of Alpinia calcarata rhizomes. Aust. J. Med. Herbalism 17:91–94.Suche in Google Scholar

Arambewela L.S.R., Arawwawala L.D.A.M. & Ratnasooriya W.D. 2004. Antinociceptive activities of aqueous and ethanolic extracts of Alpinia calcarata rhizomes in rats. J. Ethno-pharmacol. 95: 311-316.10.1016/j.jep.2004.07.015Suche in Google Scholar PubMed

Arambewela L.S.R., Arawwawala L.D.A.M. & Ratnasooriya W.D. 2005. Gastroprotective activity of hot ethanolic extract of Alpinia calcarata rhizomes in rats. Ceylon J. Med. Sci. 48: 1-11.10.4038/cjms.v48i1.4838Suche in Google Scholar

Basak S., Sarma G.C. & Rangan L. 2010. Ethnomedical uses of Zingiberaceous plants of Northeast India. J. Ethnopharmacol. 132:286-296.10.1016/j.jep.2010.08.032Suche in Google Scholar PubMed

CLSI 2006. Methods for Dilution Antimicrobial 448 Susceptibility Tests for Bacteria that Grow Aerobically. 7th Ed., Approved Standard, Clinical and Laboratory Standards Institute (CLSI) 449 document M7-A7, Vol. 26. CLSI, Wayne, PA.Suche in Google Scholar

Edelsberg J., Weycker D., Barron R., Li X., Wu H., Oster G., Badre S., Langeberg W.J. & Weber D.J. 2014. Prevalence of antibiotic resistance in US hospitals. Diagn. Microbiol. Infect. Dis. 78: 255-262.10.1016/j.diagmicrobio.2013.11.011Suche in Google Scholar PubMed

Fontaine F., Héquet A., Voisin-Chiret A.S., Bouillon A., Lesnard A., Cresteil T. & Rault S. 2015. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem. 95: 185-198.10.1016/j.ejmech.2015.02.056Suche in Google Scholar PubMed

Garzoni C. & Kelley W.L. 2009. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 17:59-65.10.1016/j.tim.2008.11.005Suche in Google Scholar PubMed

George M. & Pandalai K.M. 1949. Investigations on plant antibiotics. Indian J. Med. Res. 37:169-181.Suche in Google Scholar

Gomez-Flores R., Gupta S., Tamez-Guerra R. & Mehta R.T. 1995. Determination of MICs for Mycobacterium avium–M. intracellulare complex in liquid medium by a colorimetric method. J. Clin. Microbiol. 33:1842-1846.10.1128/jcm.33.7.1842-1846.1995Suche in Google Scholar PubMed PubMed Central

Handzlik J., Matys A. & Kiec-Kononowicz K. 2013. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2: 28–45.10.3390/antibiotics2010028Suche in Google Scholar PubMed PubMed Central

Hema P.S. & Nair M.S. 2009. Flavonoids and other constituents from the rhizomes of Alpinia calcarata. Biochem. Syst. Ecol. 37:52-54.10.1016/j.bse.2009.01.001Suche in Google Scholar

Ippolito G., Leone S., Lauria F.N., Nicastri E. & Wenzel R.P. 2010. Methicillin-resistant Staphylococcus aureus: the super-bug. Int. J. Infect. Dis. 14:S7-S11.10.1016/j.ijid.2010.05.003Suche in Google Scholar PubMed

Jayaweera D.M. 1982. Medicinal Plants Used in Ceylon. National Science Council of Sri Lanka, Colombo, 213 pp.Suche in Google Scholar

Ji J., Du X., Chen Y., Fu Y., Wang H. & Yu Y. 2013. In vitro activity of sulbactam in combination with imipenem, meropenem, panipenem or cefoperazone against clinical isolates of Acinetobacter baumannii. Int. J. Antimicrob. Agents. 41:400-401.10.1016/j.ijantimicag.2012.12.014Suche in Google Scholar

Kaatz G.W. & Seo S.M. 1997. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 41:2733-2737.10.1128/AAC.41.12.2733Suche in Google Scholar

Kaatz G.W., Seo S.M. & Ruble C.A. 1993. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 37:1086-1094.10.1128/AAC.37.5.1086Suche in Google Scholar

Kaleysa R.R. 1975. Screening of indigenous plants for an-thelmintic action against human Ascaris lumbricoides. Indian J. Physiol. Pharmacol. 19:47-49.Suche in Google Scholar

Kong L.Y., Qin M. J. & Niwa M. 2002. New cytotoxic bis-labdanic diterpenoids from Alpinia calcarata. Planta Med. 68: 813– 817.10.1055/s-2002-34404Suche in Google Scholar

Kong L.Y., Qin M.J. & Niwa M. 2004. Two new bis-labdanic diterpenoids from Alpinia calcarata. Acta Bot. Sinica 46: 159-164.Suche in Google Scholar

Kosmidis C., Schindler B.D., Jacinto P.L., Patel D., Bains K., Seo S.M. & Kaatz G.W. 2012. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 40: 204– 209.10.1016/j.ijantimicag.2012.04.014Suche in Google Scholar

Lechner D., Gibbons S., & Bucar F. 2008. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobac-terium smegmatis. J. Antimicrob. Chemother. 62: 345–348.10.1093/jac/dkn178Suche in Google Scholar

Pages J.M. & Amaral L. 2009. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta 1794:826– 833.10.1016/j.bbapap.2008.12.011Suche in Google Scholar

Poole K. & Lomovskaya O. 2006. Can efflux inhibitors really counter resistance? Drug Discov. Today – Therapeutic Strategies 3: 145-152.10.1016/j.ddstr.2006.05.005Suche in Google Scholar

Pushpangadan P. & Atal C.K. 1984. Ethno-medico-botanical investigations in Kerala I. Some primitive tribals of Western Ghats and their herbal medicine. J. Ethnopharmacol. 11:59– 77.10.1016/0378-8741(84)90096-5Suche in Google Scholar

Raj G., Pradeep D.P., Yusufali C., Da M. & Baby S. 2013. Chemical profiles of volatiles in four Alpinia species from Kerala, South India. J. Essential Oil Res. 25: 97-102.10.1080/10412905.2012.751058Suche in Google Scholar

Randhawa H.K., Gautam A., Sharma M., Bhatia R., Varsh-ney G.C., Raghava G.P.S. & Nandanwar H. 2016. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2: 1-11.10.1007/s00253-016-7329-7Suche in Google Scholar PubMed

Ratnasooriya W.D. & Jayakody J.R. 2006. Effects of aqueous extract of Alpinia calcarata rhizomes on reproductive competence of male rats. Acta Biol. Hung. 57: 23–35.10.1556/ABiol.57.2006.1.3Suche in Google Scholar PubMed

Roy S.K., Kumari N., Pahwa S., Agrahari U.C., Bhutani K.K., Jachak S.M. & Nandanwar H. 2013. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 90: 140-150.10.1016/j.fitote.2013.07.015Suche in Google Scholar PubMed

Roy S.K., Pahwa S., Nandanwar H. & Jachak S.M. 2012. Phen-lypropanoids of Alipina galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia 83: 1248– 1255.10.1016/j.fitote.2012.06.008Suche in Google Scholar PubMed

Sangwan P.L., Koul J.L., Koul S., Reddy M.V., Thota N., Khan I.A., Kumar A., Kalia N.P. & Qazi G.N. 2008. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem. 16: 9847-9857.10.1016/j.bmc.2008.09.042Suche in Google Scholar PubMed

Schmitz F.J., Fluit A.C., Luckefahr M., Engler B., Hofmann B., Verhoef J. & Jones M.E. 1998. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 42: 807-810.10.1093/jac/42.6.807Suche in Google Scholar PubMed

Shin D., Kinoshita K., Koyama K. & Takahashi K. 2002. Antiemetic principles of Alpinia officinarum. J. Nat. Prod. 65: 1315-1318.10.1021/np020099iSuche in Google Scholar PubMed

Smith E.C., Kaatz G.W., Seo S.M., Wareham N., Williamson E.M. & Gibbons S. 2007. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob, Agents Chemother. 51: 4480–4483.10.1128/AAC.00216-07Suche in Google Scholar PubMed PubMed Central

Stavri M., Piddock L.J.V. & Gibbons S. 2007. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59: 1247-1260.10.1093/jac/dkl460Suche in Google Scholar PubMed

Subramoniam A., Madhavachandran V. & Gangaprasad A. 2013. Medicinal plants in the treatment of arthritis. Annal. Phy-tomed. 2: 3-36.Suche in Google Scholar

Truong-Bolduc Q.C., Strahilevitz J. & Hooper D.C. 2006. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 1104–1107.10.1128/AAC.50.3.1104-1107.2006Suche in Google Scholar PubMed PubMed Central

Urbatsch L.E., Mabry T.J., Miyakado M., Ohno N. & Yoshika H. 1976. Flavonol methyl ethers from Ericameria diffusa. Phy-tochemistry 15: 440-441.10.1016/S0031-9422(00)86853-3Suche in Google Scholar

Abbreviations
CC

column chromatography

DMSO

dimethyl sulfoxide

EPI

efflux pump inhibitory

EtBr

ethidium bromide

FIC

fractional inhibitory concentration

FICI

fractional inhibitory concentration index

MHB

Mueller-Hinton growth medium

MIC

minimum inhibitory concentration

MF

modulation factor

MRSA

methicillin-resistant Staphylococcus aureus;

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TLC

thin layer chromatography.

Received: 2015-12-21
Accepted: 2016-4-14
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. A broad host range food-grade cloning vector for lactic acid bacteria
  3. Cellular and Molecular Biology
  4. Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
  5. Cellular and Molecular Biology
  6. Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
  7. Cellular and Molecular Biology
  8. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
  9. Cellular and Molecular Biology
  10. Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
  11. Cellular and Molecular Biology
  12. Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
  13. Botany
  14. The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
  15. Botany
  16. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
  17. Botany
  18. Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
  19. Zoology
  20. First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
  21. Zoology
  22. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
  23. Zoology
  24. Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
  25. Zoology
  26. Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
  27. Zoology
  28. Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
  29. Zoology
  30. Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
  31. Cellular and Molecular Biology
  32. Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0073/html
Button zum nach oben scrollen