Abstract
Our study provides new knowledge about macrophyte assemblages and environmental variables of Slovak drainage and irrigation canals. The canal system, comprising ca. 15% of all flows in Slovakia, is one of the oldest in Central Europe. This information represents a first step toward exploitation of macrophytes as an obligatory biological quality element for the assessment of ecological potential according to the requirements of the Water Framework Directive. Among 61 canals studied, a total of 85 aquatic plant species (35 hydrophytes, 16 amphiphytes and 34 helophytes) were recorded during the years 2012–2014, including three neophytes and 18 threatened species. Physico-chemical variables explained the highest proportion of species variability, whilst hydromorphological variables and landscape variables were much less significant. Chemical oxygen demand, ammonium nitrogen, electrical conductivity, water pH, flow velocity and water depth were identified as most important drivers of species composition of aquatic macrophytes and explained 21.1% of the variability. The CCA results revealed differences in species composition of canals reflecting the geographical origin and environmental conditions as well, relating to South-Eastern and South-Western Slovakia. In conclusion, macrophytes in drainage and irrigation canals are able to reflect several environmental variables and might provide valuable information for bioindication in assessing the ecological potential.
Acknowledgements
This study was supported by the projects “Monitoring and status assessment” (Cohesion Fund Project No. 24110110001) and “Monitoring and status assessment – II. phase” (Cohesion Fund Project No. 24110110158). The authors would like to thank Dr. Dáša Hlúbiková for valuable comments and to all participants from Slovak Water Management Enterprise, who cooperated in sampling and analyzing of physico-chemical variables. The authors also thank the anonymous reviewer for having provided useful comments and suggestions on a previous version of the manuscript.
References
Armitage P.D., Szoszkiewicz K., Blackburn J.H. & Nesbitt I. 2003. Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv. 13: 165–185.10.1002/aqc.549Suche in Google Scholar
Baláži P., Tóthová L., Oťaheľová H., Hrivnák R. & Mišíková K. 2011. Checklist of taxa examined at localities monitored in the Slovak surface water bodies–macrophytes. Acta Envir. Univ. Comenianae (Bratislava), 19 (1): 5–89.Suche in Google Scholar
Baláži P., Hrivnák R. & Oťaheľová H. 2014. The relationship between macrophyte assemblages and selected environmental variables in reservoirs of Slovakia examined for the purpose of ecological assessment. Pol. J. Ecol. 62: 541–558.10.3161/104.062.0313Suche in Google Scholar
Baláži P. & Hrivnák R. 2015. Bryophytes and macro-algal growths as a part of macrophyte monitoring in rivers used for ecological assessment. Knowl. Manag. Aquatic Ecosyst. 416, 19.10.1051/kmae/2015015Suche in Google Scholar
Biggs J., Williams P., Whitfield M., Nicolet P., Brown C., Hollis J., Arnold D. & Pepper T. 2007. The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agric. Ecosyst. Environ. 122: 137–148.10.1016/j.agee.2006.11.013Suche in Google Scholar
Bornette G. & Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci. 73: 1–14.10.1007/s00027-010-0162-7Suche in Google Scholar
Cabecinha E., Cortes R., Pardal M. & Cabral J.A. 2009. A Stochastic Dynamic Methodology (StDM) for reservoir’s water quality management: validation of a multi-scale approach in a south European basin (Douro, Portugal). Ecol. Indic. 9: 329–345.10.1016/j.ecolind.2008.05.010Suche in Google Scholar
CEN, 2003. European Standard EN 14 184 – Water quality. Guidance standard for the surveying of aquatic macrophytes in running waters. European Committee for Standardization, Brussels, 14 pp.Suche in Google Scholar
Clarke K.R. 1993. Non-parametric multivariete analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.10.1111/j.1442-9993.1993.tb00438.xSuche in Google Scholar
Clarke K.R. & Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth, UK, 192 pp.Suche in Google Scholar
Combroux I. & Bornette G. 2004. Effects of two types of disturbance on seed-bank and their relationship with established vegetation. J. Veg. Sci. 15: 13–20.10.1111/j.1654-1103.2004.tb02232.xSuche in Google Scholar
Chytrý M. (ed.) 2011. Vegetace České republiky 3. Vodní a mokřadní vegetace. Academia, Praha, 828 pp.Suche in Google Scholar
Chytrý M., Tichý M., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.10.1111/j.1654-1103.2002.tb02025.xSuche in Google Scholar
Davies B.R., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. 2008a. Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agr. Ecosyst. Environ. 125: 1–8.10.1016/j.agee.2007.10.006Suche in Google Scholar
Davies B.R., Biggs J., Williams P.J., Lee J.T. & Thompson S. 2008b. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597: 7–17.10.1007/978-90-481-9088-1_2Suche in Google Scholar
Dodds W.K. & Gudder D.A. 1992. The ecology of Cladophora.J. Phycol. 28: 415–427.10.1111/j.0022-3646.1992.00415.xSuche in Google Scholar
Dorotovičová C. 2010. Aquatic macrophytes and the longitudinal floristic-ecological zonation of the Patinský canal. Acta Rer. Nat. Mus. Nat. Slov. 56: 45–58.Suche in Google Scholar
Dorotovičová C. 2013. Man-made canals as a hotspot of aquatic macrophyte biodiversity in Slovakia. Limnologica 43: 277–287.10.1016/j.limno.2012.12.002Suche in Google Scholar
Dorotovičová C. & Oťaheľová H. 2008. The influence of anthropogenic factors on the structure of aquatic macrophytes vegetation in the Hurbanovský canal (South Slovakia). Arch. Hydrobiol. 166, Large Rivers 18(1–2): 81–90.10.1127/lr/18/2008/81Suche in Google Scholar
Dykyjová D., Košánová A., Husák Š. & Sládeková A. 1985. Macrophytes and water pollution of the Zlatá Stoka (Golden canal), Třeboň Biosphere Reserve, Czechoslovakia. Arch. Hydrobiol. 105: 31–58.10.1127/archiv-hydrobiol/105/1989/31Suche in Google Scholar
Eliáš P. jr., Dítě D., Kliment J., Hrivnák R. & Feráková V. 2015. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70: 218–228.10.1515/biolog-2015-0018Suche in Google Scholar
European Environmental Agency 2000. Coordination of Information on the Environment – Land Cover 2000.Suche in Google Scholar
European Union 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327: 1–72.Suche in Google Scholar
Ferreira M.T., Catarino L. & Moreira I. 1998. Aquatic weed assemblages in an Iberian drainage channel system and related environmental factors. Weed Res. 38: 291–300.10.1046/j.1365-3180.1998.00101.xSuche in Google Scholar
Gyalokay M. 1972. Ochrana žitného ostrova. Práce a štúdie 62. Výskumný ústav vodného hospodárstva, ALFA, Bratislava, 128 pp.Suche in Google Scholar
Haslam S.M. 2006. River Plants (revised second edition). Forrest Text, Ceredigion, 438 pp.Suche in Google Scholar
Hrivnák R., Oťaheľová H. & Valachovič M. 2007. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Pol. J. Ecol. 55: 717–729.Suche in Google Scholar
Hrivnák R., Oťaheľová H., Kochjarová J. & Paľove-Balang P. 2013. Effect of environmental conditions on species composition of macrophytes – study from two distinct biogeographical regions of Central Europe. Knowl. Manag. Aquatic Ecosyst. 411, 9.10.1051/kmae/2013076Suche in Google Scholar
Hrivnák R., Kochjarová J., Oťaheľová H., Paľove-Balang P., Slezák M. & Slezák P. 2014. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies – comparative approach from two central European regions. Ann. Limnol-Int. J. Lim. 50: 269–278.10.1051/limn/2014020Suche in Google Scholar
Jahnátek Ľ., Alena J., Barbarič M., Bielik P., Bobovník M., Buday Š., Halászová K., Hrdá A., Illáš M., Jánošíková S., Jurík Ľ., Krištofíková J., Mihálek P., Mihina Š., Mindová P., Nagyová L., Németh F., Pícha E., Puškáč J., Sobocká J., Svetlík J., Tvrdá A., Vajs J. & Vargová J. 2014. Koncepcia revitalizácie hydromeliorarčných sústav na Slovensku. Ministerstvo pôdohospodárstva a rozvoja vidieka Slovenskej republiky. Bratislava, 51 pp. + Prílohy.Suche in Google Scholar
Janauer G.A. 2003. Methods. In: Janauer G.A., Hale P. & Sweeting R. (eds), Macrophyte inventory of the river Danube: A pilot study. Arch. Hydrobiol. 14: 9–16.10.1127/lr/14/2003/9Suche in Google Scholar
Janauer G.A. & Dokulil M. 2006. Macrophytes and Algae in Running Waters, pp. 89–109. In: Ziglio G., Siligardi M. & Flaim G. (eds), Biological Monitoring of Rivers. John Wiley & Sons, Ltd., Chichester.10.1002/0470863781.ch6Suche in Google Scholar
John D.M., Whitton B.A. & Brook A.J. (eds.) 2003. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, 701 pp.Suche in Google Scholar
Jursa M. & Oťaheľová H. 2005. Distribution of aquatic macrophytes in man-modified waterbodies of the Danube River in Bratislava region (Slovakia). Ekológia 24: 368–384.Suche in Google Scholar
Koch E.W. 2001. Beyond light: physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.10.2307/1352808Suche in Google Scholar
Kohler A., Vollrath H. & Beisl E. 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefäß-Makrophyten im Fließwassersystem Moosach (Münchner Ebene). Arch. Hydrobiol. 69: 333–365.Suche in Google Scholar
Kohler A. & Janauer G.A. 1995. Zur Methodik der Untersuchungen von aquatischen Makrophyten in Fließgewässern, pp. 1–22. In: Steinberg C., Bernhardt H. & Klapper H. (eds), Handbuch Angewandte Limnologie, Ecomed Verlag, Lansberg-Lech.10.1002/9783527678488.hbal1995011Suche in Google Scholar
Lacoul P. & Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14: 891–136.10.1139/a06-001Suche in Google Scholar
Manolaki P. & Papastergiadou E. 2015. Environmental Factors Influencing Macrophytes Assemblages in a Middle-Sized Mediterranean Stream. River Res. Appl. 10.1002/rra. 2878.Suche in Google Scholar
Marhold K. & Hindák F. 1998. Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, 688 pp.Suche in Google Scholar
Medvecká J., Kliment J., Májeková J., Halada Ľ., Zaliberová M., Gojdičová E., Feráková V. & Jarolímek I. 2012. Inventory of alien species of Slovakia. Preslia 84: 257–309.Suche in Google Scholar
Miklós L. & Hrnčiarová T. 2002. Atlas krajiny Slovenskej republiky. Ministerstvo životného prostredia Slovenskej republiky, Bratislava.Suche in Google Scholar
Ministry of Environment of the Slovak Republic 2011. Water Plan of the Slovak Republic – Abbreviated version. 124 pp.Suche in Google Scholar
Oťaheľová H. 1996. Elodea nuttallii (Planchon) St. John in Slovakia. Bull. Slov. Bot. Spoločn. 18: 84–85.Suche in Google Scholar
Oťaheľová H. & Valachovič M. 2002. Effects of the Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube River (Slovakia). Preslia 74: 323–331.Suche in Google Scholar
Oťaheľová H. & Valachovič M. 2003. Distribution of macrophytes in different water-bodies (habitats) influenced by the Gabčíkovo hydropower station (Slovakia) – present status. Arch. Hydrobiol. 147(1–2), Large Rivers14(1–2): 97–115.Suche in Google Scholar
Oťaheľová H., Valachovič M. & Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37: 290–302.10.1016/j.limno.2007.07.003Suche in Google Scholar
Papastergiadou E., Stefanidis K., Dorflinger G., Giannouris E., Kostrata K. & Manolaki P. 2016. Exploring biodiversity in riparian corridors of a Mediterranean island: Plant communities and environmental parameters in Cyprus. Plant Biosyst. 150: 91–103.10.1080/11263504.2014.941032Suche in Google Scholar
Sabbatini M.R., Murphy K.J. & Irigoyen J.H. 1998. Vegetation– environment relationships in irrigation channel systems of southern Argentina. Aquat. Bot. 60: 119–133.10.1016/S0304-3770(97)00086-7Suche in Google Scholar
Sipos V.K. 2001. Makrophyten-Vegetation und Standorte in eutrophen und humosen Fliessgewässern. Beispiele aus Südschweden und Ungarn. Ber. Inst. Landschafts und Pflanzenökologie, Universität Hohenheim, Stuttgart, 13: 1–185.Suche in Google Scholar
Sipos V.K., Kohler A., Köder M. & Janauer G. 2003. Macrophyte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydriobiol. 147(1–2), Large Rivers14(1–2): 143–166.10.1127/lr/14/2003/143Suche in Google Scholar
Sokal R.R. & Rohlf F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd ed. W.H. Freeman, New York. 887 pp.Suche in Google Scholar
Szoszkiewicz K., Kayzer D., Staniszewski R. & Dawson H.F. 2010. Measures of central tendency of aquatic habitat parameters: Application to river macrophyte communities. Pol. J. Ecol. 8: 693–706.Suche in Google Scholar
Szoszkiewicz K., Ciecierska H., Kolada A., Schneider S.C., Szwabinska M. & Ruszczynska J. 2014. Parameters structuring macrophyte communities in rivers and lakes – results from a case study in North-Central Poland. Knowl. Manag. Aquatic Ecosyst. 415, 08.10.1051/kmae/2014034Suche in Google Scholar
StatSoft Inc. 2001. STATISTICA for Windows (Computer program Manual) Tulsa, OK: StatSoft Inc., 2300 Tulsa, http://www.stat.soft.com.Suche in Google Scholar
ter Braak C.J.F. & Šmilauer P. 2012. CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power. Ithaca, NY, 496 pp.Suche in Google Scholar
Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. & Sear D. 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115: 329–341.10.1016/S0006-3207(03)00153-8Suche in Google Scholar
Willby N.J., Abernethy V.J. & Demars B.O.L. 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol. 43: 43–74.10.1046/j.1365-2427.2000.00523.xSuche in Google Scholar PubMed PubMed Central
Appendix 1 Occurrence of macrophytes in selected canals within three lowlands
| All sites N = 61 | Danubian L. N = 34 | Záhorská L. N = 5 | East Slovak L. N = 22 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Taxa list | Abbrev | GF | Ct | F | D | F | D | F | D | F | D |
| MACRO-ALGAL GROWTHS | |||||||||||
| Cladophora sp. | CLA.SPX | HY | 63.9 | 4.2 | 76.5 | 5.7 | 80.0 | 4.1 | 40.9 | 1.9 | |
| Enteromorpha intestinalis (L.) Link | ENT.INT | HY | 4.9 | 0.3 | 8.8 | 0.6 | |||||
| Hydrodictyon reticulatum (L.) Lagerh | HYD.RET | HY | 1.6 | 0.1 | 4.5 | 0.2 | |||||
| Oscillatoria sp | OSC.SPX | HY | 1.6 | 0.1 | 2.9 | 0.1 | |||||
| Spirogyra sp | SPI.SPX | HY | 9.8 | 0.5 | 8.8 | 0.6 | 20.0 | 0.5 | 9.1 | 0.4 | |
| VASCULAR PLANTS | |||||||||||
| Acores calamus L | ACO.CAL | HE | 1.6 | 0.1 | 4.5 | 0.3 | |||||
| Agrostis stolonifera L | AGR.STO | HE | 1.6 | 0.1 | 20.0 | 1.4 | |||||
| Alisma lanceolatum With | ALI.LAN | AM | 6.6 | 0.3 | 8.8 | 0.4 | 4.5 | 0.2 | |||
| Alisma plantago-aquatica L | ALI.PLA | AM | 24.6 | 1.4 | 5.9 | 0.2 | 59.1 | 3.4 | |||
| Batrachium aquatile (L.) Dumort | BAT.AQU | HY | NT, § | 1.6 | 0.1 | 2.9 | 0.1 | ||||
| Batrachium circinatum (Sibth.) Spach | BAT.CIR | HY | 3.3 | 0.2 | 5.9 | 0.3 | |||||
| Berula erecta (Huds.) Coville | BER.ERE | AM | LC | 32.8 | 2.3 | 52.9 | 3.8 | 40.0 | 1.8 | ||
| Bidens frondosa L | BID.FRO | HE | 14.8 | 0.8 | 5.9 | 0.3 | 31.8 | 1.7 | |||
| Butomus umbellatus L | BUT.UMB | AM | LC | 50.8 | 3.4 | 50.0 | 3.2 | 60.0 | 4.1 | 50.0 | 3.4 |
| Callitriche cophocarpa Sendtn | CAL.COP | HY | LC | 1.6 | 0.1 | 4.5 | 0.3 | ||||
| Carex acuta L | CAR.ACU | HE | 31.1 | 2.3 | 38.2 | 2.8 | 80.0 | 6.0 | 9.1 | 0.6 | |
| Carex acutiformis Ehrh | CAR.ACT | HE | 9.8 | 0.8 | 14.7 | 1.3 | 4.5 | 0.3 | |||
| Carex buekii Wimm | CAR.BUE | HE | LC | 1.6 | 0.1 | 2.9 | 0.1 | ||||
| Carex pseudocyperus L | CAR.PSE | HE | 6.6 | 0.4 | 2.9 | 0.2 | 13.6 | 0.8 | |||
| Carex riparia Curtis | CAR.RIP | HE | 34.4 | 2.5 | 29.4 | 2.2 | 40.0 | 2.8 | 40.9 | 2.8 | |
| Ceratophyllum demersum L | CER.DEM | HY | 45.9 | 3.2 | 44.1 | 3.4 | 80.0 | 4.1 | 40.9 | 2.6 | |
| Ceratophyllum submersum L | CER.SUB | HY | LC, § | 6.6 | 0.5 | 2.9 | 0.2 | 13.6 | 1.1 | ||
| Eichhornia crassipes (Mart.) Solms | EIC.CRA | HY | 3.3 | 0.2 | 9.1 | 0.5 | |||||
| Eleocharis acicularis (L.) Roem. et Schult | ELE.ACI | HE | 1.6 | 0.1 | 4.5 | 0.2 | |||||
| Elodea canadensis Michx | ELO.CAN | HY | 1.6 | 0.1 | 2.9 | 0.2 | |||||
| Elodea nuttallii (Planch.) H. St. John | ELO.NUT | HY | 13.1 | 0.7 | 20.6 | 1.0 | 4.5 | 0.3 | |||
| Epilobium hirsutum L | EPI.HIR | HE | 14.8 | 0.7 | 8.8 | 0.3 | 27.3 | 1.3 | |||
| Equisetum palustre L | EQU.PAL | HE | 4.9 | 0.4 | 13.6 | 1.0 | |||||
| Fallopia japonica (Houtt.) Ronse Decr | FAL.JAP | HE | 3.3 | 0.1 | 2.9 | 0.1 | 4.5 | 0.1 | |||
| Galium palustre L | GAL.PAL | HE | 6.6 | 0.4 | 20.0 | 0.9 | 13.6 | 0.8 | |||
| Glyceria maxima (Hartm.) Holmb | GLY.MAX | HE | 63.9 | 4.8 | 47.1 | 3.7 | 100.0 | 7.3 | 81.8 | 6.0 | |
| Hydrocharis morsus-ranae L | HYD.MOR | HY | 26.2 | 1.6 | 29.4 | 1.9 | 20.0 | 0.9 | 22.7 | 1.3 | |
| Impatiens qlandulifera Royle | IMP.GLA | HE | 1.6 | 0.1 | 20.0 | 0.9 | |||||
| Impatiens noli-tangere L | IMP.NOL | HE | 1.6 | 0.1 | 4.5 | 0.2 | |||||
| Iris pseudacorus L | IRI.PSE | HE | 75.4 | 4.5 | 70.6 | 4.6 | 100.0 | 5.5 | 77.3 | 4.2 | |
| Lemna gibba L | LEM.GIB | HY | 9.8 | 0.7 | 5.9 | 0.5 | 18.2 | 1.1 | |||
| Lemna minor L | LEM.MIN | HY | 78.7 | 5.2 | 73.5 | 5.1 | 100.0 | 5.0 | 81.8 | 5.4 | |
| Lemna trisulca L | LEM.TRI | HY | 18.0 | 1.1 | 26.5 | 1.7 | 9.1 | 0.5 | |||
| Lycopus europaeus L | LYC.EUR | HE | 42.6 | 2.3 | 47.1 | 2.5 | 20.0 | 0.9 | 40.9 | 2.3 | |
| Lycopus exaltatus L. f | LYC.EXA | HE | LC | 6.6 | 0.4 | 8.8 | 0.6 | 4.5 | 0.3 | ||
| Lysimachia nummularia L | LYS.NUM | HE | 23.0 | 1.4 | 11.8 | 0.6 | 40.0 | 1.8 | 36.4 | 2.6 | |
| Lythrum salicaria L | LYT.SAL | HE | 44.3 | 2.1 | 29.4 | 1.5 | 77.3 | 3.5 | |||
| Mentha aquatica L | MEN.AQU | AM | 24.6 | 1.4 | 41.2 | 2.4 | 4.5 | 0.2 | |||
| Myosotis scorpioides L | MYO.SCO | AM | 55.7 | 3.7 | 64.7 | 4.0 | 60.0 | 3.2 | 40.9 | 3.2 | |
| Myosoton aquatica (L.) Scop | MYO.AQU | HE | 1.6 | 0.1 | 4.5 | 0.3 | |||||
| Myriophyllum spicatum L | MYR.SPI | HY | 14.8 | 1.0 | 23.5 | 1.6 | 4.5 | 0.3 | |||
| Najas marina L | NAJ.MAR | HY | 4.9 | 0.3 | 2.9 | 0.1 | 9.1 | 0.6 | |||
| Najas minor All | NAJ.MIN | HY | VU, § | 1.6 | 0.1 | 4.5 | 0.2 | ||||
| Nuphar lutea (L.) Sm | NUP.LUT | HY | VU, § | 34.4 | 2.6 | 29.4 | 1.9 | 40.0 | 3.2 | 40.9 | 3.5 |
| Nymphaea alba L | NYM.ALB | HY | VU | 11.5 | 0.8 | 11.8 | 0.8 | 20.0 | 1.4 | 9.1 | 0.7 |
| Persicaria amphibia (L.) Delarbre | PER.AMP | AM | 4.9 | 0.2 | 2.9 | 0.1 | 40.0 | 1.4 | |||
| Persicaria hydropiper L | PER.HYD | HE | 27.9 | 1.9 | 23.5 | 1.7 | 40.0 | 2.8 | 31.8 | 2.1 | |
| Persicaria lapathifolia (L.) Gray | PER.LAP | HE | 4.9 | 0.2 | 2.9 | 0.1 | 9.1 | 0.4 | |||
| Persicaria maculosa Gray | PER.MAC | HE | 1.6 | 0.1 | 2.9 | 0.1 | |||||
| Phalaris arundinacea L | PHA.ARU | HE | 47.5 | 3.2 | 44.1 | 2.8 | 100.0 | 6.0 | 40.9 | 3.2 | |
| Phellandrium aquaticum L | PHE.AQU | AM | 18.0 | 1.0 | 11.8 | 0.6 | 31.8 | 1.9 | |||
| Phragmites australis (Cay.) Trin | PHR.AUS | HE | 47.5 | 3.2 | 52.9 | 3.6 | 80.0 | 4.6 | 31.8 | 2.4 | |
| Potamogeton crispus L | POT.CRI | HY | 31.1 | 2.0 | 44.1 | 3.1 | 20.0 | 0.9 | 13.6 | 0.7 | |
| Potamogeton lucens L | POT.LUC | HY | 3.3 | 0.2 | 5.9 | 0.3 | |||||
| Potamogeton natans L | POT.NAT | HY | 1.6 | 0.2 | 4.5 | 0.5 | |||||
| Potamogeton nodosus Poir | POT.NOD | HY | NT | 14.8 | 0.9 | 11.8 | 0.6 | 60.0 | 3.7 | 9.1 | 0.6 |
| Potamogeton panormitanus Biv | POT.PAN | HY | 1.6 | 0.1 | 2.9 | 0.1 | |||||
| Potamogeton pectinatus L | POT.PEC | HY | 34.4 | 2.4 | 41.2 | 3.2 | 20.0 | 0.9 | 27.3 | 1.7 | |
| Potamogeton perfoliatus L | POT.PER | HY | NT | 8.2 | 0.6 | 14.7 | 1.2 | ||||
| Taxa list | Abbrev | GF | Ct | All sites | |||||||
| N = 61 | Danubian L | ||||||||||
| N = 34 | Zahorska, L. East Slovak L | ||||||||||
| N = 5 | N = 22 | ||||||||||
| F | D | F | D | F | D | F | D | ||||
| Ranunculus repens L | RAN.REP | HE | 31.1 | 2.0 | 32.4 | 2.0 | 20.0 | 0.9 | 31.8 | 2.3 | |
| Ranunculus sceleratus L | RAN.SCE | HE | 8.2 | 0.4 | 14.7 | 0.7 | |||||
| Rorippa amphibia (L.) Besser | ROR.AMP | AM | 9.8 | 0.5 | 8.8 | 0.3 | 60.0 | 3.2 | |||
| Rumex hydrolapathum Huds | RUM.HYD | HE | 29.5 | 1.6 | 29.4 | 1.3 | 40.0 | 2.3 | 27.3 | 1.8 | |
| Rumex maritimus L | RUM.MAR | HE | 9.8 | 0.5 | 11.8 | 0.7 | 9.1 | 0.4 | |||
| Sagittaria sagittifolia L | SAG.SAG | AM | LC | 19.7 | 1.2 | 11.8 | 0.6 | 60.0 | 3.7 | 22.7 | 1.5 |
| Salvinia natans (L.) All | SAL.NAT | HY | LC, § | 13.1 | 0.6 | 17.6 | 0.9 | 9.1 | 0.4 | ||
| Schoenoplectus lacustris (L.) Palla | SCH.LAC | AM | 9.8 | 0.5 | 11.8 | 0.8 | 9.1 | 0.3 | |||
| Schoenoplectus tabernaemontani | SCH.TAB | HE | NT | 1.6 | 0.1 | 2.9 | 0.1 | ||||
| (C.C.Gmel) Palla | |||||||||||
| Sium latifolium L | SIU.LAT | AM | 1.6 | 0.1 | 2.9 | 0.1 | |||||
| Sparganium emersum Rehmann | SPA.EME | AM | 32.8 | 2.4 | 32.4 | 2.3 | 80.0 | 6.0 | 22.7 | 1.7 | |
| Sparganium erectum L | SPA.ERE | AM | 19.7 | 1.9 | 8.8 | 1.0 | 20.0 | 1.4 | 36.4 | 3.4 | |
| Spirodela polyrhiza (L.) Schleiden | SPI.POL | HY | 45.9 | 2.4 | 44.1 | 2.4 | 60.0 | 2.8 | 45.5 | 2.5 | |
| Stratiotes aloides L | STR.ALO | HY | NT, § | 1.6 | 0.2 | 4.5 | 0.5 | ||||
| Symphytum officinale L | SYM.OFF | HE | 18.0 | 0.9 | 17.6 | 0.9 | 22.7 | 1.1 | |||
| Trapa natans L | TRA.NAT | HY | LC, § | 4.9 | 0.3 | 13.6 | 0.8 | ||||
| Typha angustifolia L | TYP.ANG | HE | 32.8 | 1.9 | 32.4 | 1.6 | 40.0 | 1.4 | 31.8 | 2.6 | |
| Typha latifolia L | TYP.LAT | HE | 54.1 | 3.4 | 44.1 | 2.4 | 60.0 | 2.3 | 68.2 | 5.1 | |
| Utricularia australis R. Br | UTR.AUS | HY | LC | 8.2 | 0.6 | 11.8 | 0.9 | 4.5 | 0.3 | ||
| Veronica anagallis-aquatica L | VER.ANA | AM | 21.3 | 1.4 | 32.4 | 2.2 | 9.1 | 0.5 | |||
| Zannichellia palustris L | ZAN.PAL | HY | 1.6 | 0.1 | 4.5 | 0.2 | |||||
| Number of HY/AM/HE | 35/15/35 | 27/15/27 | 11/8/16 | 27/11/29 | |||||||
Legend: GF – growth form, AM – amphiphytes, HE – helophytes, HY – hydrophytes; D – dominance, F – frequency; Ct – category of threat: LC – least concern, VU – vulnerable, NT – near threatened, §– species protected in Slovakia, endangered species are in bold and neophytes are underlined.
© 2016 Institute of Botany, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- A broad host range food-grade cloning vector for lactic acid bacteria
- Cellular and Molecular Biology
- Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
- Cellular and Molecular Biology
- Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
- Cellular and Molecular Biology
- Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
- Cellular and Molecular Biology
- Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
- Cellular and Molecular Biology
- Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
- Botany
- The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
- Botany
- Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
- Botany
- Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
- Zoology
- First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
- Zoology
- Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
- Zoology
- Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
- Zoology
- Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
- Zoology
- Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
- Zoology
- Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
- Cellular and Molecular Biology
- Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Artikel in diesem Heft
- Cellular and Molecular Biology
- A broad host range food-grade cloning vector for lactic acid bacteria
- Cellular and Molecular Biology
- Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
- Cellular and Molecular Biology
- Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
- Cellular and Molecular Biology
- Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
- Cellular and Molecular Biology
- Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
- Cellular and Molecular Biology
- Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
- Botany
- The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
- Botany
- Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
- Botany
- Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
- Zoology
- First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
- Zoology
- Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
- Zoology
- Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
- Zoology
- Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
- Zoology
- Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
- Zoology
- Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
- Cellular and Molecular Biology
- Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures