Abstract
The effects of nanomolding characteristics on an antireflective surface fabricated via injection molding were investigated. The optical property of a sub-wavelength structure (SWS) of our own making was also measured. The sizes of nanostructures fabricated on SWS molds were controlled by changing the average particle diameters used as mask and the time of reactive ion etching. The maximum filling ratio of the injected polymer was increased from 51.7% to 90.4% by changing the average particle diameters from 83.8 nm to 111.2 nm. In addition, the filled ratio of the injected polymer was increased from 51.7% to 73.7% under the same processing conditions. The results of the measurements of the optical property indicated that the reflectance of small-sized and large-sized SWSs fabricated with the same process condition was decreased at the wavelengths of 550 nm and 980 nm, respectively. The wavelength showed that the minimum reflectance was varied from the visible range to the near-infrared range by changing the size of the SWS under the same processing condition. This result led us to conclude that we can obtain antireflection surfaces for any wavelength by varying the size of the SWS under the same injection-molding condition.
References
[1] G. C. Par, Y. M. Song, J.-H. Ha and Y. T. Lee, J. Nanosci. Nanotechnol. 11, 6152–6156 (2011).10.1166/jnn.2011.4350Suche in Google Scholar PubMed
[2] C.-H. Sun, P. Jiang and B. Jiang, 92, 061112 (2008).10.1063/1.2870080Suche in Google Scholar
[3] T. Tamura, M. Umetani, K. Yamada, Y. Tanaka, K. Kintaka, et al., Appl. Phys. Express 3, 112501 (2010).10.1143/APEX.3.112501Suche in Google Scholar
[4] J.-H. Shin, H.-J. Choi, G.-T. Kim, J.-H. Choi and H. Lee, Appl. Phys. Express 6, 055001 (2013).10.7567/APEX.6.055001Suche in Google Scholar
[5] T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, et al., Microsyst. Technol. 11, 86–90 (2005).10.1007/s00542-004-0412-5Suche in Google Scholar
[6] B. Päivänranta, T. Saastamoinen and M. A. Kuittinen, Nanotechnology 20, 375301 (2009).10.1088/0957-4484/20/37/375301Suche in Google Scholar PubMed
[7] J. Turunen, in ‘Micro-Optics’, Ed. By H. P. Herzig (Taylor & Francis, London, 1998).Suche in Google Scholar
[8] K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, et al., Thin Solid Films 516, 7167–7170 (2008).10.1016/j.tsf.2007.12.088Suche in Google Scholar
[9] S. Ji, J. Park and H. Lim, Nanoscale 4, 4603–4610 (2012).10.1039/c2nr30787aSuche in Google Scholar PubMed
[10] D.-H. Ko, J. R. Tumbleston, K. J. Henderson, L. E. Euliss, J. M. DeSimone, et al., Soft Matter 7, 6404–6407 (2011).10.1039/c1sm05302gSuche in Google Scholar
[11] J. Sun, X. Wang, J. Wu, C. Jiang, J. Shen, et al., Sci. Rep. 8, 5438 (2018).10.1038/s41598-018-23771-ySuche in Google Scholar PubMed PubMed Central
[12] H. Jung and K.-H. Jeong, Appl. Phys. Lett. 101, 203102 (2012).10.1063/1.4747717Suche in Google Scholar
[13] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, et al., Sol. Energy 76, 277–283 (2004).10.1016/j.solener.2003.08.019Suche in Google Scholar
[14] H. H. Solak, J. Phys. D: Appl. Phys. 10, R171–R188 (2006).10.1088/0022-3727/39/10/R01Suche in Google Scholar
[15] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, et al., Science 321, 926–939 (2008).10.1126/science.1156401Suche in Google Scholar PubMed
[16] E. Han, K. O. Stuen, Y.-H. La, P. F. Nealey and P. Gopalan, Macromolecules 41, 9090–9097 (2008).10.1021/ma8018393Suche in Google Scholar
[17] C.-C. Liu, P. F. Nealey, Y.-H. Ting and A. E. Wendt. J. Vac. Sci. Technol., B. 25, 1963–1968 (2007).10.1116/1.2801884Suche in Google Scholar
[18] B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, et al., ACS Nano 5, 1860–1864 (2011).10.1021/nn103361dSuche in Google Scholar PubMed
[19] T. Yanagishita, M. Masui, N. Ikegawa and H. Masuda, J. Vac. Sci. Tech. B 32, 021809 (2014).10.1116/1.4868030Suche in Google Scholar
[20] T. Yanagishita, T. Hidaka, M. Suzuki and H. Masuda, J. Vac. Sci. Tech. B 34, 021804 (2016).10.1116/1.4943044Suche in Google Scholar
[21] Y. Kanamori, M. Okochi and K. Hane, Opt. Express 21, 322–328 (2013).10.1364/OE.21.000322Suche in Google Scholar PubMed
[22] B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee and G. Y. Jung, Jpn. J. Appl. Phys. 48, 010207 (2009).10.1143/JJAP.48.010207Suche in Google Scholar
[23] I. Mano, T. Uchida and J. Taniguchi, Microelectron. Eng. 191, 97–103 (2018).10.1016/j.mee.2018.01.023Suche in Google Scholar
[24] C. David, P. Haberling, M. Schnieper, J. Sochtig and C. Zschokke, Microelectron. Eng. 61–62, 435–440 (2002).10.1016/S0167-9317(02)00425-2Suche in Google Scholar
[25] S. S. Oh, C.-G. Choi and Y.-S. Kim, Microelectron. Eng. 87, 2328–2331 (2010).10.1016/j.mee.2010.03.012Suche in Google Scholar
[26] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, et al., Appl. Phys. Lett. 94, 263118 (2009).10.1063/1.3171930Suche in Google Scholar
[27] K. Kurihara, Y. Saitou, N. Souma, S. Makihara, H. Kato, et al., Mater. Res. Express 2, 015008 (2015).10.1088/2053-1591/2/1/015008Suche in Google Scholar
©2019 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography