Home Mathematics Global boundedness and stability of a quasilinear two-species chemotaxis-competition model with nonlinear sensitivities
Article Open Access

Global boundedness and stability of a quasilinear two-species chemotaxis-competition model with nonlinear sensitivities

  • Dongze Yan and Changchun Liu EMAIL logo
Published/Copyright: November 15, 2025

Abstract

This study deals with the global boundedness of a classical solution to a quasilinear two-species chemotaxis-competition model with nonlinear sensitivities in n 3 . Due to the presence of nonlinear sensitivities, obtaining the necessary w L estimate for global existence seems difficult because of the strongly coupled structure. To this end, we propose new energy functionals to address this difficulty. Moreover, by constructing Lyapunov functionals, we obtain several results concerning the global stability of classical solutions.

MSC 2020: 92C17; 35A09; 35K57; 35Q92

1 Introduction and main results

In this article, we are devoted to the following quasilinear two-species chemotaxis-competition model with nonlinear sensitivities:

(1.1) u t = ( ( u + 1 ) m u ) + χ 1 ( u w k w ) + μ 1 u ( 1 u a 1 v ) , v t = ( ( v + 1 ) m v ) + χ 2 ( v w k w ) + μ 2 v ( 1 v a 2 u ) , w t = Δ w w + u + v , u ν Ω = v ν Ω = w ν Ω = 0 , u ( x , 0 ) = u 0 ( x ) , v ( x , 0 ) = v 0 ( x ) , w ( x , 0 ) = w 0 ( x ) ,

where Ω R n ( n = 2 , 3 ) is a bounded domain with smooth boundary, ν is the outward unit normal vector on Ω . u = u ( x , t ) and v = v ( x , t ) represent the population densities of two competitive biological species and w = w ( x , t ) represents the concentrations of chemical substances produced by u and v . As for the initial data in (1.1), we suppose that

(1.2) ( u 0 , v 0 , w 0 ) ( W 1 , p ( Ω ) ) 3 ( p > n ) , and u 0 , v 0 , w 0 0 ( 0 ) .

First, in order to better study the model (1.1), it is necessary to consider the following quasilinear Keller-Segel system:

(1.3) u t = ( D ( u ) u S ( u ) χ ( v ) v ) + f ( u ) , x Ω , t > 0 , v t = Δ v v + u , x Ω , t > 0 .

When f ( u ) 0 and χ ( v ) 1 , the known results reveal that the asymptotics of S ( u ) D ( u ) u 2 n is the critical condition for blow-up and global boundedness [33,42]. In addition to this, we can refer to [68,13,40] for further results on the boundedness and blow-up of model (1.3). When a general logistic source f ( u ) is added to (1.3), some findings regarding (1.3) indicate that f ( u ) can prevent the blow-up of solutions [10,39,43,50]. On the other hand, when D ( u ) u m 1 , S ( u ) u , χ ( v ) 1 v , and f ( u ) 0 , Ren and Ma [29] demonstrated that the model admits at least one global weak solution in a two-dimensional bounded domain if m > 2 . Subsequently, Ren and Zhou [30] further optimized the results, such that the aforementioned conclusion holds when m > 3 2 . If we consider the cases where D ( u ) 1 or a general logistic source f ( u ) exists in model (1.3), the relevant results can be referred to in [9,19,44,46,49].

One variation in (1.3) is the two-species and one-stimuli scenario, where two species react to the same chemical signaling substance they produce. Therefore, we proceed to directly introduce the following chemotaxis system that incorporates two-species single-stimulus Lotka-Volterra competitive kinetics:

(1.4) u t = ( D 1 ( u ) u S 1 ( u ) χ 1 ( w ) w ) + f 1 ( u , v ) , x Ω , t > 0 , v t = ( D 2 ( v ) v S 2 ( v ) χ 2 ( w ) w ) + f 2 ( u , v ) , x Ω , t > 0 , w t = Δ w w + u + v , x Ω , t > 0 ,

where f 1 ( u , v ) μ 1 u ( 1 u a 1 v ) and f 2 ( u , v ) μ 2 v ( 1 v a 2 u ) . For the case where χ i ( w ) 1 ( i = 1 , 2 ) , when D i ( u ) 1 and S i ( u ) u ( i = 1 , 2 ) , it was shown in [4] that the global solution exists for n 2 and the long-time behavior of the solution was investigated. In addition, the result on the large-time behavior was further improved in [22]. Pan et al. [25] showed that there exists a global classical solution in high dimensions ( n 5 ) if μ i ( i = 1 , 2 ) are sufficiently large. When the functions D i ( s ) , S i ( s ) , and f i ( i = 1 , 2 ) satisfy some conditions, the global boundedness of classical solutions was shown in [14,21,24,26,37,45]. For the case where χ i ( w ) χ i w ( i = 1 , 2 ) , when D i ( u ) 1 and S i ( u ) u ( i = 1 , 2 ) , Zhang and Liu [47] obtained the existence of the globally bounded classical solution for sufficiently small χ i ( i = 1 , 2 ) . When f 1 , f 2 C 1 [ 0 , ) satisfy f 1 ( u , v ) + f 2 ( u , v ) a ( u + v ) b ( u + v ) γ , Zhang and Xu [48] established the existence of a globally bounded classical solution for γ > 2 . Furthermore, relevant results for the two-species, two-signal system can also be found in [15,20,27,38].

Motivations and main results: As mentioned in the introduction, most existing studies on model (1.1) have primarily focused on the cases k = 0 (refer [4,14,25,26], etc.) or k < 0 (refer [29,30,46,48], etc.). In contrast, for k > 0 , the global existence of classical solutions remains largely unexplored, with no systematic theoretical results available to date. Hence, to further refine the results for the quasilinear two-species chemotaxis-competition model with nonlinear sensitivities χ i ( w ) = w k ( k > 0 ), we study the existence of global classical solutions for the case k > 0 .

Due to the presence of term χ i ( w ) = χ i w k ( k > 0 ) ( i = 1 , 2 ) , the existing methods for handling quasilinear two-species chemotaxis system (e.g., [14,26,33,47]) are no longer applicable. The main challenge in this study is how to obtain the estimate of w L (especially when n = 3 ). To overcome this difficulty, we construct the following new energy functionals:

Ω u ln u + Ω v ln v , n = 2 , m > 0 , k > 0 ,

and

( k + 2 ) 2 2 χ 1 Ω u ln u + ( k + 2 ) 2 2 χ 2 Ω v ln v + Ω w k + 2 2 2 + Ω u m + 1 + Ω v m + 1 , n = 3 , m > 1 2 , 0 < k < 1 .

We begin by presenting some results regarding the global existence of solutions and their uniform boundedness with respect to time.

Theorem 1.1

Let Ω R 2 be a bounded domain with smooth boundary. Assume that the initial data satisfy the conditions given in (1.2) and the parameters are such that χ i R , μ i > 0 , and a i > 0 for i = 1 , 2 . If m > 0 and k > 0 , then problem (1.1) has a global classical solution. Moreover, there exists C > 0 independent of t such that

u ( , t ) L + v ( , t ) L + w ( , t ) W 1 , C , for a l l t > 0 .

Theorem 1.2

Let Ω R 3 be a bounded domain with smooth boundary. Assume that the initial data satisfy the conditions given in (1.2) and the parameters are such that χ i > 0 , μ i > 0 , and a i > 0 for i = 1 , 2 . If m > 1 2 and 0 < k < 1 , then problem (1.1) has a global classical solution. Moreover, there exists C > 0 independent of t such that

u ( , t ) L + v ( , t ) L + w ( , t ) W 1 , C , for a l l t > 0 .

Remark 1.1

In fact, the above results on the global existence of solutions can be extended to model (1.3). Specifically, when D ( u ) ( u + 1 ) m , S ( u ) u , f ( u ) r u u 2 , and χ ( v ) v k , if m > 0 and k > 0 , the global existence of classical solutions can be established in two dimensions. Furthermore, in three dimensions, if m > 1 2 and 0 < k < 1 , the global existence of classical solutions can also be obtained.

Our following main results are concerned with the asymptotic behavior of solution to (1.1). When both competitive kinetic terms in (1.1) are weak in the sense that a 1 ( 0 , 1 ) and a 2 ( 0 , 1 ) , we consider the coexistence steady state, denoted by u * = 1 a 1 1 a 1 a 2 , v * = 1 a 2 1 a 1 a 2 , and w * = 2 a 1 a 2 1 a 1 a 2 , which satisfy

(1.5) 1 u * a 1 v * = 0 , 1 v * a 2 u * = 0 , w * + u * + v * = 0 .

Theorem 1.3

Assume that the conditions in either Theorem 1.1 or Theorem 1.2 hold. If one of the following conditions

  1. 0 < k < m + 2 2 , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 2 ,

  2. 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 3 ,

is satisfied, then there exist μ 1 * > 0 and μ 2 * > 0 such that for all μ 1 > μ 1 * and μ 2 > μ 2 * , it holds that

(1.6) lim t ( u u * L + v v * L + w w * L ) = 0 .

Here μ 1 * and μ 2 * denote constants depending on m , χ i , a i ( i = 1 , 2 ) , Ω , u 0 L , v 0 L , and w 0 W 1 , p . For details, refer the proof of Lemma 4.1.

In the case of strong asymmetry ( a 1 1 , a 2 < 1 ) , we consider the semi trivial steady state.

Theorem 1.4

Assume that the conditions in either Theorem 1.1 or Theorem 1.2 hold. If one of the following conditions

  1. 0 < k < m + 2 2 , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 2 ,

  2. 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 3 ,

is satisfied, then there exists μ 2 > 0 such that for all μ 2 > μ 2 , it holds that

(1.7) lim t ( u L + v 1 L + w 1 L ) = 0 .

Here μ 2 is a constant depending on m , χ i , a i ( i = 1 , 2 ) , Ω , u 0 L , v 0 L , and w 0 W 1 , p . For details, refer the proof of Lemma 4.3.

In what follows, we shall abbreviate Ω f d x as Ω f for simplicity without confusion.

2 Local existence and preliminaries

Inspired by [6,12,17], the local existence of solutions to (1.1) can be proved by the Amann’s theorem [2,3].

Lemma 2.1

(Local existence) Let Ω R n ( n = 2 , 3 ) be a bounded domain with smooth boundary. Assume (1.2), m 0 , and k 0 hold, then there exists a constant T max ( 0 , ] such that problem (1.1) has a unique classical solution ( u , v , w )

u C 0 ( Ω ¯ × [ 0 , T max ) ) C 2,1 ( Ω ¯ × ( 0 , T max ) ) , v C 0 ( Ω ¯ × [ 0 , T max ) ) C 2,1 ( Ω ¯ × ( 0 , T max ) ) , w C 0 ( Ω ¯ × [ 0 , T max ) ) C 2,1 ( Ω ¯ × ( 0 , T max ) ) ,

satisfying u , v , w > 0 for all t > 0 , where T max denotes the maximal existence time. Moreover if T max < , then

lim t T max sup ( u ( , t ) L + v ( , t ) L + w ( , t ) W 1 , ) = .

Proof

Let h = ( u , v , w ) . Problem (1.1) can be reformulated as

(2.1) h t = ( A ( h ) h ) + Φ ( h ) , x Ω , t > 0 , ν A ( h ) h = 0 , x Ω , t > 0 , h ( , 0 ) = ( u 0 , v 0 , w 0 ) , x Ω ,

A ( h ) = ( u + 1 ) m 0 χ 1 u w k 0 ( v + 1 ) m χ 2 v w k 0 0 1 and Φ ( h ) = μ 1 u ( 1 u a 1 v ) μ 2 u ( 1 u a 2 v ) w + u + v .

If u , v 0 , then tr A = ( u + 1 ) m + ( v + 1 ) m + 1 > 0 and det A = ( u + 1 ) m ( v + 1 ) m > 0 . The continuity of the trace and determinant ensures the existence of an open neighborhood D 0 of [ 0 , ) 3 in R 3 such that, for all u , v , w D 0 , all the eigenvalues of A have positive real parts. Thus, defining the operators A , by A ( η ) h ( A ( η ) h ) and ( η ) h ν A ( η ) h for η D 0 , we see that ( A ( η ) , ( η ) ) are of separated divergence form and hence, normally elliptic for all η in D 0 (cf. [3, Example 4.3(e)]).

Hence, it follows from [3, Theorems 14.4 and 14.6] that for a given h 0 ( W 1 , p ( Ω ) ) 3 with p > n , there exists a maximal existence time T max > 0 and a unique h ( C 0 ( Ω ¯ × [ 0 , T max ) ) ) C 2,1 ( Ω ¯ × ( 0 , T max ) ) 3 that is a classical solution to (2.1). Moreover, the positivity of ( u , v , w ) can be derived through the maximum principle. Extensibility criterion is obtained from [3, Theorem 15.5]. Consequently, the proof is completed.□

Lemma 2.2

([32] Lemma 2.2) Let T > 0 , τ ( 0 , T ) , a > 0 , and b > 0 . Suppose that y : [ 0 , T ) [ 0 , ) is absolutely continuous and fulfills

y ( t ) + a y ( t ) h ( t ) , for a l l t ( 0 , T ) ,

with some nonnegative function h L loc 1 ( [ 0 , T ) ) satisfying t t + τ h ( t ) b for all t [ 0 , T τ ) . Then,

y ( t ) max y ( 0 ) + b , b a τ + 2 b , for a l l t ( 0 , T ) .

Lemma 2.3

[18] Let p 1 and q 1 satisfy

q < n p n p , when p < n , q < , when p = n , q = , when p > n .

Assuming g 0 W 1 , q ( Ω ) and g is a classical solution of the following equations:

g t = Δ g g + f , in Ω × ( 0 , T ) , g ν = 0 , on Ω × ( 0 , T ) , g ( x , 0 ) = g 0 , in Ω ,

for some T ( 0 , ] . If f L ( ( 0 , T ) ; L p ( Ω ) ) , then g L ( ( 0 , T ) ; W 1 , q ( Ω ) ) .

Next, we give some L p L q estimates for the Neumann heat semigroup (refer, for instance [5,11,41]).

Lemma 2.4

Let ( e t d Δ ) t 0 be the Neumann heat semigroup in Ω , and let λ 1 > 0 denote the first nonzero eigenvalue of d Δ in Ω under Neumann boundary conditions. Then, for all t > 0 , there exist some constants γ i ( i = 1 , 2 , 3 , 4 ) depending only on Ω such that

  1. If 2 p < , then

    (2.2) e t d Δ z L p γ 1 e λ 1 d t z L p ,

    for all z W 1 , p ( Ω ) .

  2. If 1 q p , then

    (2.3) e t d Δ z L p γ 2 1 + t 1 2 n 2 1 q 1 p e λ 1 d t z L q ,

    for all z L q ( Ω ) .

  3. If 1 q p , then

    (2.4) e t d Δ z L p γ 3 1 + t n 2 1 q 1 p e λ 1 d t z L q ,

    for all z L q ( Ω ) .

  4. If 1 < q p < or 1 < q < and p = , then

    (2.5) e t d Δ z L p γ 4 1 + t 1 2 n 2 1 q 1 p e λ 1 d t z L q ,

    for all z ( L q ( Ω ) ) n .

Lemma 2.5

[23] Assume that Ω is a bounded domain, and let g C 2 ( Ω ) satisfy g v = 0 on Ω . Then, we have

g 2 v 2 κ g 2 ,

where κ = κ ( Ω ) is an upper bound of the curvatures of Ω .

Lemma 2.6

Assume the assumptions in Lemma 2.1 hold, then there exist constants K 1 > 0 and K 2 > 0 independent of t such that

(2.6) u ( , t ) L 1 + v ( , t ) L 1 + w ( , t ) L 1 K 1 Ω u 0 + Ω v 0 + Ω w 0 + 4 Ω , for all t ( 0 , T max ) ,

and

(2.7) t t + τ Ω u 2 ( , s ) + t t + τ Ω v 2 ( , s ) K 2 Ω u 0 + Ω μ 1 + Ω v 0 + Ω μ 2 + τ Ω u 0 + Ω v 0 + 2 Ω ,

for all t ( 0 , T ˜ max ) , where

τ min 1 , 1 2 T max and T ˜ max T max τ , if T max < , , if T max = .

Proof

By straightforward computation using (1.1) and integration by parts, we can derive that

(2.8) d d t Ω u = μ 1 Ω u ( 1 u a 1 v ) , for all  t ( 0 , T max ) ,

(2.9) d d t Ω v = μ 2 Ω v ( 1 v a 2 u ) , for all  t ( 0 , T max ) .

Cauchy-Schwarz’s inequality entails that

(2.10) d d t Ω u μ 1 Ω u μ 1 Ω Ω u 2 , for all  t ( 0 , T max ) ,

and

(2.11) d d t Ω v μ 2 Ω v μ 2 Ω Ω v 2 , for all  t ( 0 , T max ) ,

which together with comparison principle for ordinary differential equation give

(2.12) Ω u max Ω u 0 , Ω Ω u 0 + Ω , for all  t ( 0 , T max ) ,

and

(2.13) Ω v max Ω v 0 , Ω Ω v 0 + Ω , for all  t ( 0 , T max ) .

We can therefore integrate (2.8) and (2.9) over ( t , t + τ ) to obtain

(2.14) t t + τ Ω u 2 1 μ 1 u + t t + τ Ω u 1 μ 1 + τ Ω u 0 + Ω , for all t ( 0 , T ˜ max ) ,

and

(2.15) t t + τ Ω v 2 1 μ 2 v + t t + τ Ω v 1 μ 2 + τ Ω v 0 + Ω , for all t ( 0 , T ˜ max ) .

On the other hand, by combining (2.12) and (2.13), we can obtain

Ω w max Ω w 0 , Ω ( u + v ) , for all  t ( 0 , T max ) .

Consequently, the proof is completed.□

Lemma 2.7

Assume the assumptions in Lemma 2.1 hold. Then, the solution of (1.1) satisfies

w ( , t ) L 2 K 3 , for a l l t ( 0 , T max ) ,

and

(2.16) t t + τ Ω Δ w ( , s ) 2 K 4 , for all t ( 0 , T ˜ max ) ,

where K j K j ( m , μ 1 , μ 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) > 0 ( j = 3 , 4 ) are constants independent of t.

Proof

Multiplying the third equation of (1.1) by Δ w , integrating the result over Ω , we can use Young’s inequality to obtain

1 2 d d t Ω w 2 = Ω Δ w 2 Ω w 2 Ω u Δ w Ω v Δ w Ω Δ w 2 Ω w 2 + 1 2 Ω Δ w 2 + Ω u 2 + Ω v 2 1 2 Ω Δ w 2 Ω w 2 + Ω u 2 + Ω v 2 , for all  t ( 0 , T max ) ,

which gives

(2.17) 1 2 d d t Ω w 2 + Ω w 2 + 1 2 Ω Δ w 2 Ω u 2 + Ω v 2 .

Finally, applying Lemma 2.2 and (2.7), we have

Ω w 2 c 1 ( w 0 L 2 2 + K 2 ) , for all t ( 0 , T max ) .

Thereupon, an integration of (2.17) over ( t , t + τ ) yields

t t + τ Ω Δ w ( s ) 2 c 2 ( w 0 L 2 2 + K 2 ) , for all t ( 0 , T ˜ max ) .

Thus, the proof of Lemma 2.7 is completed.□

3 Proof of Theorems 1.1 and 1.2

In this section, we shall establish the boundedness of solution in n ( n 3 ) dimensional spaces.

3.1 Boundedness of u ( , t ) L 2 and v ( , t ) L 2 for n = 2

We aim to determine the upper bounds of u L 2 and v L 2 . To achieve this, we first present spatio-temporal estimates of u m 1 u 2 and v m 1 v 2 .

Lemma 3.1

Let the assumptions in Theorem 1.1 hold. If m > 0 and k > 0 , then there exists a constant K 5 K 5 ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) independent of t such that

(3.1) t t + τ Ω ( u ( , s ) + 1 ) m 1 u ( , s ) 2 + t t + τ Ω ( v ( , s ) + 1 ) m 1 v ( , s ) 2 K 5 , for a l l t ( 0 , T max ) .

Proof

Multiplying the first equation by ln u + 1 and the second equation by ln v + 1 , then integrating the result over Ω , we can apply Young’s inequality to obtain

(3.2) d d t Ω u ln u + Ω v ln v Ω ( u + 1 ) m u u 2 Ω ( v + 1 ) m v v 2 χ 1 Ω w k w u χ 2 Ω w k w v + μ 1 Ω u ( 1 u a 1 v ) ( ln u + 1 ) + μ 2 Ω v ( 1 v a 2 u ) ( ln v + 1 ) Ω ( u + 1 ) m 1 u 2 Ω ( v + 1 ) m 1 v 2 χ 1 Ω w k w u χ 2 Ω w k w v + μ 1 Ω u ln u ( 1 u a 1 v ) + μ 2 Ω v ln v ( 1 v a 2 u ) μ 1 2 Ω u 2 μ 2 2 Ω v 2 + ( μ 1 + μ 2 ) Ω 2 1 2 Ω ( u + 1 ) m 1 u 2 1 2 Ω ( v + 1 ) m 1 v 2 + χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 + μ 1 Ω u ln u ( 1 u a 1 v ) + μ 2 Ω v ln v ( 1 v a 2 u ) μ 1 2 Ω u 2 μ 2 2 Ω v 2 + ( μ 1 + μ 2 ) Ω 2 ,

for all t ( 0 , T max ) . Owing to (2.6) and the facts that u ln u > 1 e , u ln u u 3 2 + c 1 , v ln v > 1 e , and v ln v v 3 2 + c 2 , we have

(3.3) d d t Ω u ln u + Ω v ln v + Ω u ln u + Ω v ln v + 1 2 Ω ( u + 1 ) m 1 u 2 + 1 2 Ω ( v + 1 ) m 1 v 2 χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 + ( μ 1 + 1 ) Ω u ln u μ 1 Ω u 2 ln u μ 1 a 1 Ω v u ln u + ( μ 2 + 1 ) Ω v ln v μ 2 Ω v 2 ln v μ 2 a 2 Ω u v ln v μ 1 2 Ω u 2 μ 2 2 Ω v 2 + ( μ 1 + μ 2 ) Ω 2 χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 + ( μ 1 + 1 ) Ω ( u 3 2 + c 1 ) + μ 1 e Ω u + a 1 μ 1 e Ω v μ 1 2 Ω u 2 + ( μ 2 + 1 ) Ω ( v 3 2 + c 2 ) + μ 2 e Ω v + a 2 μ 2 e Ω u μ 2 2 Ω v 2 + ( μ 1 + μ 2 ) Ω 2 χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 + μ 1 + a 2 μ 2 e K 1 + μ 2 + a 1 μ 1 e K 1 + 8 ( μ 1 + 1 ) 4 μ 1 3 Ω + c 1 ( μ 1 + 1 ) Ω + 8 ( μ 2 + 1 ) 4 μ 2 3 Ω + c 2 ( μ 2 + 1 ) Ω + ( μ 1 + μ 2 ) Ω 2 χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 + C 1 ,

for all t ( 0 , T max ) . By applying Lemma 2.7 and Gagliardo-Nirenberg’s inequality, on the one hand, we obtain

(3.4) w L 4 4 c 3 Δ w L 2 1 2 w L 2 1 2 + w L 2 4 c 3 K 3 1 2 Δ w L 2 1 2 + K 3 4 c 4 K 3 2 Δ w L 2 2 + c 4 K 3 4 , for all  t ( 0 , T max ) ;

while on the other hand, we derive

(3.5) w L p c 5 w L 2 p 1 p w L 1 1 p + w L 1 c 5 K 1 K 3 p 1 p + c 5 K 1 , for all  t ( 0 , T max ) and p ( 1 , ) .

With the facts m > 0 and n = 2 , we once again apply Gagliardo-Nirenberg’s inequality to establish the existence of a constant 2 < q < m + 2 such that

(3.6) u L q q u + 1 L q q = ( u + 1 ) m + 1 2 2 q m + 1 2 q m + 1 c 6 ( u + 1 ) m + 1 2 L 2 1 1 q ( u + 1 ) m + 1 2 L 2 m + 1 1 q + ( u + 1 ) m + 1 2 L 2 m + 1 2 q m + 1 c 6 ( K 1 + Ω ) 1 q ( u + 1 ) m + 1 2 L 2 1 1 q + K 1 + Ω 2 q m + 1 c 7 ( K 1 + Ω ) 2 q 1 ( u + 1 ) m + 1 2 L 2 2 + c 7 ( K 1 + Ω ) 2 q m + 1 + c 7 ,

and

(3.7) v L q q v + 1 L q q = ( v + 1 ) m + 1 2 2 q m + 1 2 q m + 1 c 8 ( v + 1 ) m + 1 2 L 2 1 1 q ( v + 1 ) m + 1 2 L 2 m + 1 1 q + ( v + 1 ) m + 1 2 L 2 m + 1 2 q m + 1 c 9 ( K 1 + Ω ) 2 q 1 ( v + 1 ) m + 1 2 L 2 2 + c 9 ( K 1 + Ω ) 2 q m + 1 + c 9 .

Now, we go back to estimate the first and second terms in the right-hand side of (3.3). When m 1 , by (3.4) and (3.5), we obtain

(3.8) χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 χ 1 2 2 Ω w 2 k w 2 + χ 2 2 2 Ω w 2 k w 2 χ 1 2 4 Ω w 4 k + χ 1 2 4 Ω w 4 + χ 2 2 4 Ω w 4 k + χ 2 2 4 Ω w 4 c 4 χ 1 2 4 + χ 2 2 4 K 3 2 Ω Δ w 2 + c 4 χ 1 2 4 + χ 2 2 4 K 3 4 + c 10 χ 1 2 4 + χ 2 2 4 ( K 1 4 k K 3 4 k 1 + K 1 4 k ) , for all  t ( 0 , T max ) .

When m < 1 , employing (3.5)–(3.7), we deduce that

(3.9) χ 1 2 2 Ω ( u + 1 ) 1 m w 2 k w 2 + χ 2 2 2 Ω ( v + 1 ) 1 m w 2 k w 2 χ 1 2 4 Ω ( u + 1 ) 2 2 m w 4 k + χ 1 2 4 Ω w 4 + χ 2 2 4 Ω ( v + 1 ) 2 2 m w 4 k + χ 2 2 4 Ω w 4 1 c 7 ( K 1 + Ω ) 2 q 1 ( m + 1 ) 2 Ω u q + 1 c 9 ( K 1 + Ω ) 2 q 1 ( m + 1 ) 2 Ω v q + χ 1 2 + χ 2 2 4 Ω w 4 + χ 1 2 4 4 χ 1 2 c 7 ( K 1 + Ω ) 2 q 1 ( m + 1 ) 2 2 2 m q + 2 m 2 Ω w 4 k q q + 2 m 2 + χ 2 2 4 4 χ 2 2 c 9 ( K 1 + Ω ) 2 q 1 ( m + 1 ) 2 2 2 m q + 2 m 2 Ω w 4 k q q + 2 m 2 1 4 Ω ( u + 1 ) m 1 u 2 + 1 4 Ω ( v + 1 ) m 1 v 2 + χ 1 2 + χ 2 2 4 Ω w 4 + c 11 ( χ 1 2 q q + 2 m 2 + χ 2 2 q q + 2 m 2 ) × ( m + 1 ) 4 4 m q + 2 m 2 ( K 1 + Ω ) 4 2 m ( q 1 ) ( q + 2 m 2 ) ( K 1 4 k q q + 2 m 2 K 3 4 k q q + 2 m 2 1 + K 1 4 k q q + 2 m 2 ) 1 4 Ω ( u + 1 ) m 1 u 2 + 1 4 Ω ( v + 1 ) m 1 v 2 + ( χ 1 2 + χ 2 2 ) c 4 K 3 2 4 Ω Δ w 2 + c 11 ( χ 1 2 q q + 2 m 2 + χ 2 2 q q + 2 m 2 ) × ( m + 1 ) 4 4 m q + 2 m 2 ( K 1 + Ω ) 4 2 m ( q 1 ) ( q + 2 m 2 ) ( K 1 4 k q q + 2 m 2 K 3 4 k q q + 2 m 2 1 + K 1 4 k q q + 2 m 2 ) + ( χ 1 2 + χ 2 2 ) c 4 K 3 4 4 1 4 Ω ( u + 1 ) m 1 u 2 + 1 4 Ω ( v + 1 ) m 1 v 2 + ( χ 1 2 + χ 2 2 ) c 4 K 3 2 4 Ω Δ w 2 + C 2 , for all  t ( 0 , T max ) .

With the help of (3.3) and (3.8), we can first obtain

(3.10) d d t Ω u ln u + Ω v ln v + Ω u ln u + Ω v ln v + 1 4 Ω ( u + 1 ) m 1 u 2 + 1 4 Ω ( v + 1 ) m 1 v 2 c 4 χ 1 2 4 + χ 2 2 4 K 3 2 Ω Δ w 2 + c 4 χ 1 2 4 + χ 2 2 4 K 3 4 + c 10 χ 1 2 4 + χ 2 2 4 ( K 1 4 k K 3 4 k 1 + K 1 4 k ) + C 1 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 4 Ω Δ w 2 + C 3 , for all  t ( 0 , T max ) and m 1 .

Similarly, by applying (3.3) and (3.9), we obtain

(3.11) d d t Ω u ln u + Ω v ln v + Ω u ln u + Ω v ln v + 1 4 Ω ( u + 1 ) m 1 u 2 + 1 4 Ω ( v + 1 ) m 1 v 2 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 4 Ω Δ w 2 + C 1 + C 2 , for all  t ( 0 , T max ) and m < 1 .

Employing Lemma 2.2 and (2.16) to (3.10) and (3.11), we obtain

(3.12) Ω u ln u + Ω v ln v c 12 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 K 4 4 + C 3 + 1 , for all m 1 ,

and

(3.13) Ω u ln u + Ω v ln v c 13 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 K 4 4 + C 1 + C 2 + 1 , for all m < 1 ,

for all t ( 0 , T max ) . Then, we can integrate (3.10) and (3.11) over ( t , t + τ ) to finally obtain

t t + τ Ω ( u + 1 ) m 1 u 2 + t t + τ Ω ( v + 1 ) m 1 v 2 c 14 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 K 4 4 + C 3 + 1 , for all m 1 ,

and

t t + τ Ω ( u + 1 ) m 1 u 2 + t t + τ Ω ( v + 1 ) m 1 v 2 c 15 ( χ 1 2 + χ 2 2 ) c 4 K 3 2 K 4 4 + C 1 + C 2 + 1 , for all m < 1 ,

for all t ( 0 , T ˜ max ) . This completes the proof.□

Lemma 3.2

Let the assumptions in Theorem 1.1 hold. If m > 0 and k > 0 , then there exists a constant K 6 K 6 ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) independent of t such that

(3.14) w ( , t ) L K 6 , for a l l t ( 0 , T max ) .

Proof

According to (3.6), (3.7), and Lemma 3.1, it is easy to see that there exists a constant 2 < q < m + 2 such that

(3.15) t t + τ Ω u q + t t + τ Ω v q c 1 ( K 1 + Ω ) 2 q 1 K 5 + c 1 ( K 1 + Ω ) 2 q m + 1 + c 1 , for all t ( 0 , T ˜ max ) .

Next we thereafter determine the bound of w L making use of above estimates. We rewrite the third equation of (1.1) as follows:

(3.16) w t Δ w + w = u + v .

Applying the variation-of-constants formula to (3.16), one has

w ( , t ) = e t ( Δ 1 ) w 0 + t τ t e ( t s ) ( Δ 1 ) ( u + v ) d s .

Then, through the standard L p L q estimates in Lemma 2.4 and Hölder’s inequality, we observe that

(3.17) w ( , t ) L e t ( Δ 1 ) w 0 L + t τ t e ( t s ) ( Δ 1 ) ( u + v ) L d s c 2 + c 3 t τ t 1 + ( t s ) 1 q e ( λ 1 + 1 ) ( t s ) u L q d s + c 3 t τ t 1 + ( t s ) 1 q e ( λ 1 + 1 ) ( t s ) v L q d s c 2 + c 3 t τ t 1 + ( t s ) 1 q 1 e ( ( λ 1 + 1 ) q q 1 ) ( t s ) d s q 1 q t τ t u L q q d s 1 q + c 3 t τ t 1 + ( t s ) 1 q 1 e ( ( λ 1 + 1 ) q q 1 ) ( t s ) d s q 1 q t τ t v L q q d s 1 q c 2 + c 4 c 1 ( K 1 + Ω ) 2 q 1 K 5 + c 1 ( K 1 + Ω ) 2 q m + 1 + c 1 1 q ,

for all t ( 0 , T max ) . Thus, the proof of this lemma is complete.□

Lemma 3.3

Let the assumptions in Theorem 1.1 hold. If m > 0 and k > 0 , then there exists a constant K 7 independent of t such that

(3.18) u ( , t ) L 2 + v ( , t ) L 2 K 7 , for a l l t ( 0 , T max ) .

Proof

Multiplying the first equation by u and the second equation by v , then integrating the result over Ω and applying the boundedness of w L , we can obtain

(3.19) 1 2 d d t Ω u 2 + Ω v 2 + Ω u 2 + Ω v 2 Ω ( u + 1 ) m u 2 Ω ( v + 1 ) m v 2 χ 1 Ω u w k u w χ 2 Ω v w k v w + ( μ 1 + 1 ) Ω u 2 μ 1 Ω u 3 + ( μ 2 + 1 ) Ω v 2 μ 2 Ω v 3 Ω ( u + 1 ) m u 2 Ω ( v + 1 ) m v 2 + c 1 Ω ( u + 1 ) u w c 1 Ω ( v + 1 ) v w + c 2 1 2 Ω ( u + 1 ) m u 2 1 2 Ω ( v + 1 ) m v 2 + c 3 Ω ( u + 1 ) 2 m w 2 + c 3 Ω ( v + 1 ) 2 m w 2 + c 2 1 2 Ω ( u + 1 ) m u 2 1 2 Ω ( v + 1 ) m v 2 + c 3 Ω ( u + 1 ) 4 2 m 1 2 Ω w 4 1 2 + c 3 Ω ( v + 1 ) 4 2 m 1 2 Ω w 4 1 2 + c 2 , for all t ( 0 , T max ) .

On the one hand, when m 1 , we obtain from (3.4) that

c 3 Ω ( u + 1 ) 4 2 m 1 2 Ω w 4 1 2 + c 3 Ω ( v + 1 ) 4 2 m 1 2 Ω w 4 1 2 c 3 2 Ω ( u + 1 ) 4 2 m + c 3 2 Ω ( v + 1 ) 4 2 m + c 3 Ω w 4 c 4 Ω ( u + 1 ) 2 + c 4 Ω ( v + 1 ) 2 + c 4 Δ w 2 + c 4 , for all t ( 0 , T max ) ,

which gives

1 2 d d t Ω u 2 + Ω v 2 + Ω u 2 + Ω v 2 c 4 Ω ( u + 1 ) 2 + c 4 Ω ( v + 1 ) 2 + c 4 Δ w 2 + c 4 + c 2 , for all t ( 0 , T max ) .

From Lemma 2.2 and (2.16), it follows that (3.18) holds when m 1 .

On the other hand, when m < 1 , we use Gagliardo-Nirenberg’s inequality to estimate

(3.20) Ω ( u + 1 ) 4 2 m 1 2 = ( u + 1 ) m + 2 2 L 2 ( 4 2 m ) m + 2 4 2 m m + 2 c 5 ( u + 1 ) m + 2 2 L 2 1 m 2 m ( u + 1 ) m + 2 2 L 4 m + 2 1 2 m + ( u + 1 ) m + 2 2 L 4 m + 2 4 2 m m + 2 c 6 ( u + 1 ) m + 2 2 L 2 2 2 m m + 2 ( u + 1 ) m + 2 2 L 4 m + 2 2 m + 2 + c 6 ( u + 1 ) m + 2 2 L 4 m + 2 4 2 m m + 2 c 7 ( u + 1 ) m + 2 2 L 2 u + 1 L 2 + c 7 u + 1 L 2 2 + c 7 ,

which, combined with (3.4), implies that

(3.21) c 3 Ω ( u + 1 ) 4 2 m 1 2 Ω w 4 1 2 c 8 ( u + 1 ) m + 2 2 L 2 u + 1 L 2 Δ w L 2 + c 8 u + 1 L 2 2 Δ w L 2 + c 8 Δ w L 2 + c 8 ( u + 1 ) m + 2 2 L 2 u + 1 L 2 + c 8 u + 1 L 2 2 + c 8 1 8 Ω ( u + 1 ) m u 2 + c 9 u + 1 L 2 2 ( Δ w L 2 2 + 1 ) + c 9 Δ w L 2 2 + c 9 ,

for all t ( 0 , T max ) . Similar to (3.20) and (3.21), we can obtain

(3.22) c 3 Ω ( v + 1 ) 4 2 m 1 2 Ω w 4 1 2 1 8 Ω ( v + 1 ) m v 2 + c 10 v + 1 L 2 2 ( Δ w L 2 2 + 1 ) + c 10 Δ w L 2 2 + c 10 , for all t ( 0 , T max ) .

Inserting (3.21) and (3.22) into (3.19) implies

(3.23) 1 2 d d t Ω u 2 + Ω v 2 + Ω u 2 + Ω v 2 + 1 4 Ω ( u + 1 ) m u 2 + 1 4 Ω ( v + 1 ) m v 2 c 11 ( u + 1 L 2 2 + v + 1 L 2 2 ) ( Δ w L 2 2 + 1 ) + c 11 Δ w L 2 2 + c 11 = c 11 ( u L 2 2 + 2 u L 1 + Ω + v L 2 2 + 2 v L 1 + Ω ) ( Δ w L 2 2 + 1 ) + c 11 Δ w L 2 2 + c 11 c 12 ( u L 2 2 + v L 2 2 ) ( Δ w L 2 2 + 1 ) + c 12 Δ w L 2 2 + c 12 , for all t ( 0 , T max ) .

In view of (3.23), (3.18) will be established based on spatio-temporal estimates. From (2.7), we find t 1 ( ( t τ ) + , t ) such that Ω u 2 ( , t 1 ) + Ω v 2 ( , t 1 ) c 12 . Then, using Grönwall’s inequality to (3.23) over ( t 1 , t ) , we obtain

(3.24) Ω ( u 2 ( , t ) + v 2 ( , t ) ) Ω ( u 2 ( , t 1 ) + v 2 ( , t 1 ) ) e c 12 t 1 t ( Δ u ( , s ) L 2 2 + 1 ) d s + c 12 t 1 t ( Δ w L 2 2 + 1 ) e c 12 s t ( Δ u ( , τ ) L 2 2 + 1 ) d τ d s c 13 ,

through (2.16). Thus, the proof is complete.□

3.2 Boundedness of u ( , t ) L 2 and v ( , t ) L 2 for n = 3

To obtain the upper bounds of u L 2 and v L 2 , we first need to derive the upper bound of w L . To address this issue, we construct a new energy functional.

Lemma 3.4

Let the assumptions in Lemma 2.1 hold, then for all 1 < p < 3 2 , there holds

(3.25) d d t Ω w p 2 + p 2 Ω w 2 p 2 Δ w 2 + p 2 3 Ω w 2 p 2 D 2 w 2 + 2 p 3 Ω w 2 p 2 w 2 + p 2 3 ( p 1 ) ( 3 2 p ) Ω w 2 p 4 w 4 C 4 p 2 Ω w 2 p 2 w 2 2 p 2 2 p 1 Ω Δ w 2 p 1 u 2 p 2 2 p 1 Ω Δ w 2 p 1 v + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 u + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 v ,

where C 4 > 0 is a constant independent of t.

Proof

Using the third equation in (1.1), we have

(3.26) d d t Ω w p 2 = 2 Ω ( w p ) ( w p ) t = 2 p 2 Ω w 2 p 2 w ( w ) t + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 w t = 2 p 2 2 p 1 Ω ( Δ w 2 p 1 ) w t + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 w t = 2 p 2 2 p 1 Ω Δ w 2 p 1 ( Δ w w + u + v ) + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 ( Δ w w + u + v ) = 2 p 2 2 p 1 Ω Δ w 2 p 1 Δ w + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 Δ w 2 p 3 Ω w 2 p 2 w 2 2 p 2 2 p 1 Ω Δ w 2 p 1 u 2 p 2 2 p 1 Ω Δ w 2 p 1 v + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 u + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 v = 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 Δ w 2 p 2 Ω w 2 p 2 Δ w 2 2 p 3 Ω w 2 p 2 w 2 2 p 2 2 p 1 Ω Δ w 2 p 1 u 2 p 2 2 p 1 Ω Δ w 2 p 1 v + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 u + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 v , for all  t ( 0 , T max ) .

Noting the fact that w Δ w = 1 2 Δ w 2 D 2 w 2 , we obtain

2 p 2 ( p 1 ) Ω w 2 p 3 w 2 Δ w = p 2 Ω w 2 p 2 Δ w 2 + p 2 Ω w 2 p 2 w Δ w = p 2 Ω w 2 p 2 Δ w 2 p 2 Ω w 2 p 2 D 2 w 2 + p 2 2 Ω w 2 p 2 Δ w 2 = p 2 Ω w 2 p 2 Δ w 2 p 2 Ω w 2 p 2 D 2 w 2 + p 2 2 Ω w 2 p 2 w 2 ν d S p 2 ( p 1 ) Ω w 2 p 3 w w 2 = p 2 Ω w 2 p 2 Δ w 2 p 2 Ω w 2 p 2 D 2 w 2 + p 2 2 Ω w 2 p 2 w 2 ν d S + p 2 ( p 1 ) ( 2 p 3 ) Ω w 2 p 4 w 4 + p 2 ( p 1 ) Ω w 2 p 3 w 2 Δ w ,

which gives

(3.27) 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 Δ w = 2 p 2 3 Ω w 2 p 2 Δ w 2 2 p 2 3 Ω w 2 p 2 D 2 w 2 + p 2 3 Ω w 2 p 2 w 2 ν d S 2 p 2 3 ( p 1 ) ( 3 2 p ) Ω w 2 p 4 w 4 , for all t ( 0 , T max ) .

On the other hand, by applying Lemma 2.5, we can use the following trace inequality ([31, Remark 52.9])

(3.28) z L 2 ( Ω ) ε z L 2 ( Ω ) + C ε z L 2 ( Ω ) , for any  ε > 0 ,

to obtain

(3.29) p 2 3 Ω w 2 p 2 w 2 ν d S 2 κ p 2 3 Ω w 2 p 2 w 2 d S = 2 κ 3 w p L 2 ( Ω ) 2 2 κ c 1 3 ε p 2 ( p 1 ) 2 Ω w 2 p 4 w 4 + ε p 2 Ω w 2 p 2 D 2 w 2 + 2 C ε p 2 κ 3 Ω w 2 p 2 w 2 ε 2 κ c 1 p 2 ( p 1 ) 2 3 Ω w 2 p 4 w 4 + ε 2 κ c 1 p 2 3 Ω w 2 p 2 D 2 w 2 + C 4 p 2 Ω w 2 p 2 w 2 , for all t ( 0 , T max ) .

By choosing appropriate ε < min { 1 2 κ c 1 , 3 2 p 2 κ c 1 ( p 1 ) } such that

ε 2 κ c 1 p 2 ( p 1 ) 2 3 p 2 3 ( p 1 ) ( 3 2 p ) and ε 2 κ c 1 p 2 3 p 2 3 ,

we can then obtain

(3.30) p 2 3 Ω w 2 p 2 w 2 ν d S p 2 3 ( p 1 ) ( 3 2 p ) Ω w 2 p 4 w 4 + p 2 3 Ω w 2 p 2 D 2 w 2 + C 4 p 2 Ω w 2 p 2 w 2 , for all t ( 0 , T max ) .

Now collecting (3.26), (3.27), and (3.30), we have

(3.31) d d t Ω w p 2 + p 2 Ω w 2 p 2 Δ w 2 + p 2 3 Ω w 2 p 2 D 2 w 2 + 2 p 3 Ω w 2 p 2 w 2 + p 2 3 ( p 1 ) ( 3 2 p ) Ω w 2 p 4 w 4 C 4 p 2 Ω w 2 p 2 w 2 2 p 2 2 p 1 Ω Δ w 2 p 1 u 2 p 2 2 p 1 Ω Δ w 2 p 1 v + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 u + 2 p 2 ( p 1 ) Ω w 2 p 3 w 2 v ,

for all t ( 0 , T max ) . Thus, the proof is complete.□

Lemma 3.5

Let the assumptions in Theorem 1.2 hold. If m > 1 2 and 0 < k < 1 , then there exists a constant K 8 K 8 ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) independent of t such that

t t + τ Ω ( u ( , s ) + 1 ) m 1 u ( , s ) 2 + t t + τ Ω ( v ( , s ) + 1 ) m 1 v ( , s ) 2 K 8 ,

and

(3.32) t t + τ Ω w k 2 ( , s ) w ( , s ) 4 K 8 , for a l l t ( 0 , T ˜ max ) .

Proof

First, by Gagliardo-Nirenberg’s inequality, we can obtain

(3.33) w L 6 c 1 ( w L 2 + w L 1 ) c 1 ( K 1 + K 3 ) , for all  t ( 0 , T max ) .

Let p = k + 2 2 in Lemma 3.4. Applying (3.33), Hölder’s inequality, and Young’s inequality, we can obtain

(3.34) d d t Ω w k + 2 2 2 + ( k + 2 ) 2 4 Ω w k Δ w 2 + ( k + 2 ) 2 12 Ω w k D 2 w 2 + ( k + 2 ) 3 4 Ω w k w 2 + k ( k + 2 ) 2 ( 1 k ) 24 Ω w k 2 w 4 C 4 ( k + 2 ) 2 4 Ω w k w 2 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + ( k + 2 ) 2 k 4 Ω w k 1 w 2 u + ( k + 2 ) 2 k 4 Ω w k 1 w 2 v k ( k + 2 ) 2 ( 1 k ) 144 Ω w k 2 w 4 + 9 C 4 2 ( k + 2 ) 2 4 k ( 1 k ) Ω w k + 2 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + k ( k + 2 ) 2 ( 1 k ) 144 Ω w k 2 w 4 + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w k u 2 + k ( k + 2 ) 2 ( 1 k ) 144 Ω w k 2 w 4 + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w k v 2 k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w k u 2 + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w k v 2 + 9 C 4 2 ( k + 2 ) 2 4 k ( 1 k ) ( c 1 6 ( K 1 + K 3 ) 6 + Ω ) k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w 6 k 6 Ω u 12 6 k 6 k 6 + 9 ( k + 2 ) 2 k 4 ( 1 k ) Ω w 6 k 6 Ω v 12 6 k 6 k 6 + 9 C 4 2 ( k + 2 ) 2 4 k ( 1 k ) ( c 1 6 ( K 1 + K 3 ) 6 + Ω ) k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + 9 C 4 2 ( k + 2 ) 2 c 1 k ( K 1 + K 3 ) k 4 k ( 1 k ) Ω u 12 6 k 6 k 6 + 9 C 4 2 ( k + 2 ) 2 c 1 k ( K 1 + K 3 ) k 4 k ( 1 k ) Ω v 12 6 k 6 k 6 + 9 C 4 2 ( k + 2 ) 2 4 k ( 1 k ) ( c 1 6 ( K 1 + K 3 ) 6 + Ω ) k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + C 5 Ω u 12 6 k 6 k 6 + C 5 Ω v 12 6 k 6 k 6 + C 6 , for all t ( 0 , T max ) .

Here, we once again use Gagliardo-Nirenberg’s inequality to obtain

(3.35) C 5 Ω u 12 6 k 6 k 6 = C 5 u m + 1 2 L 24 ( 6 k ) ( m + 1 ) 4 m + 1 C 5 ( u + 1 ) m + 1 2 L 24 ( 6 k ) ( m + 1 ) 4 m + 1 C 5 c 2 ( u + 1 ) m + 1 2 L 2 α ( u + 1 ) m + 1 2 L 2 m + 1 1 α + ( u + 1 ) m + 1 2 L 2 m + 1 4 m + 1 C 5 c 2 ( u + 1 ) m + 1 2 L 2 α ( K 1 + Ω ) 1 α + K 1 + Ω 4 m + 1 C 5 c 3 ( ( K 1 + Ω ) 4 + 1 ) ( u + 1 ) m + 1 2 L 2 4 α m + 1 + c 3 K 1 4 m + 1 + c 3 ( k + 2 ) 2 4 χ 1 Ω ( u + 1 ) m 1 u 2 + c 4 ( C 5 K 1 4 + C 5 ) m + 1 m + 1 2 α + c 3 K 1 4 m + 1 + c 3 , for all t ( 0 , T max ) ,

where α = m + 1 2 ( 6 k ) ( m + 1 ) 24 m + 1 2 1 6 ( 0 , 1 ) . Similar to (3.35), we can obtain

(3.36) C 5 Ω v 12 6 k 6 k 6 = C 5 v m + 1 2 L 24 ( 6 k ) ( m + 1 ) 4 m + 1 C 5 ( v + 1 ) m + 1 2 L 24 ( 6 k ) ( m + 1 ) 4 m + 1 ( k + 2 ) 2 4 χ 2 Ω ( v + 1 ) m 1 v 2 + c 5 ( C 5 K 1 4 + C 5 ) m + 1 m + 1 2 α + c 5 K 1 4 m + 1 + c 5 , for all t ( 0 , T max ) ,

which, combined with (3.34), implies that

(3.37) d d t Ω w k + 2 2 2 + ( k + 2 ) 2 4 Ω w k Δ w 2 + ( k + 2 ) 2 12 Ω w k D 2 w 2 + ( k + 2 ) 3 4 Ω w k w 2 + k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 u ( k + 2 ) 2 2 ( k + 1 ) Ω Δ w k + 1 v + ( k + 2 ) 2 4 χ 1 Ω ( u + 1 ) m 1 u 2 + ( k + 2 ) 2 4 χ 2 Ω ( v + 1 ) m 1 v 2 + C 6 + c 6 ( C 5 K 1 4 + C 5 ) m + 1 m + 1 2 α + c 6 K 1 4 m + 1 + c 6 , for all t ( 0 , T max ) .

On the other hand, according to (3.2) and (3.3), a direct calculation yields

(3.38) d d t Ω u ln u + Ω u ln u + Ω ( u + 1 ) m 1 u 2 χ 1 k + 1 Ω Δ w k + 1 u + C 1 ,

and

(3.39) d d t Ω v ln v + Ω v ln v + Ω ( v + 1 ) m 1 v 2 χ 2 k + 1 Ω Δ w k + 1 v + C 1 ,

for all t ( 0 , T max ) . Then, by adding (3.38) multiplied by ( k + 2 ) 2 2 χ 1 , (3.39) multiplied by ( k + 2 ) 2 2 χ 2 , and (3.37), we derive

(3.40) d d t ( k + 2 ) 2 2 χ 1 Ω u ln u + ( k + 2 ) 2 2 χ 2 Ω v ln v + Ω w k + 2 2 2 + ( k + 2 ) 2 2 χ 1 Ω u ln u + ( k + 2 ) 2 2 χ 2 Ω v ln v + ( k + 2 ) 2 4 χ 1 Ω ( u + 1 ) m 1 u 2 + ( k + 2 ) 2 4 χ 2 Ω ( v + 1 ) m 1 v 2 + ( k + 2 ) 3 4 Ω w k w 2 + k ( k + 2 ) 2 ( 1 k ) 48 Ω w k 2 w 4 C 6 + c 6 ( C 5 K 1 4 + C 5 ) m + 1 m + 1 2 α + c 6 K 1 4 m + 1 + c 6 + C 1 ( k + 2 ) 2 2 χ 1 + ( k + 2 ) 2 2 χ 2 C 7 , for all t ( 0 , T max ) .

Thanks to Grönwall’s inequality, there exists a constant c 7 > 0 such that

(3.41) t t + τ Ω ( u + 1 ) m 1 u 2 + t t + τ Ω ( v + 1 ) m 1 v 2 + t t + τ Ω w k 2 w 4 c 7 ( C 7 + 1 ) , for all t ( 0 , T ˜ max ) .

Thus, the proof is complete.□

Lemma 3.6

Let the assumptions in Theorem 1.2 hold. If m > 1 2 and 0 < k < 1 , then there exist constants K i K i ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) > 0 ( i = 9 , 10 ) independent of t such that

(3.42) u ( , t ) L m + 1 + v ( , t ) L m + 1 K 9 , for a l l t ( 0 , T max ) ,

and

(3.43) t t + τ Ω u m + 2 ( , s ) + t t + τ Ω v m + 2 ( , s ) K 10 , for a l l t ( 0 , T ˜ max ) .

Proof

Multiplying the first equation of (1.1) by u m and the second equation of (1.1) by v m with m > 1 , integrating the result over Ω , we can use Young’s inequality to obtain

(3.44) 1 m + 1 d d t Ω u m + 1 + Ω v m + 1 + Ω u m + 1 + Ω v m + 1 + m Ω u 2 m 1 u 2 + m Ω v 2 m 1 v 2 + μ 1 Ω u m + 2 + μ 2 Ω v m + 2 m χ 1 Ω u m w k u w m χ 2 Ω v m w k u w + ( μ 1 + 1 ) Ω u m + 1 + ( μ 2 + 1 ) Ω v m + 1 m 2 Ω u 2 m 1 u 2 + m 2 Ω v 2 m 1 v 2 + m χ 1 2 2 Ω u w 2 k w 2 + m χ 2 2 2 Ω v w 2 k w 2 + μ 1 2 Ω u m + 2 + μ 2 2 Ω v m + 2 + 2 m + 1 ( μ 1 + 1 ) m + 2 μ 1 m + 1 Ω + 2 m + 1 ( μ 2 + 1 ) m + 2 μ 2 m + 1 Ω m 2 Ω u 2 m 1 u 2 + m 2 Ω v 2 m 1 v 2 + m χ 1 2 + m χ 2 2 4 Ω w k 2 w 4 + m χ 1 2 4 Ω u 2 w 3 k + 2 + m χ 2 2 4 Ω v 2 w 3 k + 2 + μ 1 2 Ω u m + 2 + μ 2 2 Ω v m + 2 + 2 m + 1 ( μ 1 + 1 ) m + 2 μ 1 m + 1 Ω + 2 m + 1 ( μ 2 + 1 ) m + 2 μ 2 m + 1 Ω ,

which gives

(3.45) 1 m + 1 d d t Ω u m + 1 + Ω v m + 1 + Ω u m + 1 + Ω v m + 1 + m 2 Ω u 2 m 1 u 2 + m 2 Ω v 2 m 1 v 2 + μ 1 2 Ω u m + 2 + μ 2 2 Ω v m + 2 m χ 1 2 + m χ 2 2 4 Ω w k 2 w 4 + m χ 1 2 4 Ω u 2 w 3 k + 2 + m χ 2 2 4 Ω v 2 w 3 k + 2 + 2 m + 1 ( μ 1 + 1 ) m + 2 μ 1 m + 1 Ω + 2 m + 1 ( μ 2 + 1 ) m + 2 μ 2 m + 1 Ω , for all t ( 0 , T max ) .

Given the facts that m > 1 2 and 0 < k < 1 , there exists a constant p such that 1 < p < 3 m + 3 2 . Then, we can use Hölder’s inequality to obtain

(3.46) m χ 1 2 4 Ω u 2 w 3 k + 2 + m χ 2 2 4 Ω v 2 w 3 k + 2 m χ 1 2 4 Ω u 2 p 1 p Ω w ( 3 k + 2 ) p 1 p + m χ 2 2 4 Ω v 2 p 1 p Ω w ( 3 k + 2 ) p 1 p ,

where p = p p 1 . Applying Gagliardo-Nirenberg’s inequality, we have

(3.47) m χ 1 2 4 Ω u 2 p 1 p = m χ 1 2 4 u 2 m + 1 2 L 4 p 2 m + 1 4 2 m + 1 c 1 m χ 1 2 4 u 2 m + 1 2 L 2 α 1 u 2 m + 1 2 L 2 2 m + 1 1 α 1 + u 2 m + 1 2 L 2 2 m + 1 4 2 m + 1 c 1 m χ 1 2 4 u 2 m + 1 2 L 2 α 1 K 1 1 α 1 + K 1 4 2 m + 1 c 2 m χ 1 2 4 u 2 m + 1 2 L 2 4 α 1 2 m + 1 K 1 4 4 α 1 2 m + 1 + c 2 m χ 1 2 4 K 1 4 2 m + 1 ε 1 c 2 m χ 1 2 4 u 2 m + 1 2 L 2 2 + ε 1 2 α 1 2 m + 1 2 α 1 c 2 m χ 1 2 4 K 1 4 4 α 1 2 m + 1 2 α 1 + c 2 m χ 1 2 4 K 1 4 2 m + 1 ε 1 c 2 m ( 2 m + 1 ) 2 χ 1 2 16 Ω u 2 m 1 u 2 + ε 1 2 α 1 2 m + 1 2 α 1 c 2 m χ 1 2 4 K 1 4 4 α 1 2 m + 1 2 α 1 + c 2 m χ 1 2 4 K 1 4 2 m + 1 ε 1 c 2 m ( 2 m + 1 ) 2 χ 1 2 16 Ω u 2 m 1 u 2 + C 8 , for any given  ε 1 > 0 ,

and

(3.48) m χ 2 2 4 Ω v 2 p 1 p ε 2 c 3 m ( 2 m + 1 ) 2 χ 2 2 16 Ω v 2 m 1 v 2 + ε 2 2 α 1 2 m + 1 2 α 1 c 3 m χ 2 2 4 K 1 4 4 α 1 2 m + 1 2 α 1 + c 3 m χ 2 2 4 K 1 4 2 m + 1 ε 2 c 3 m ( 2 m + 1 ) 2 χ 2 2 16 Ω v 2 m 1 v 2 + C 9 , for any given  ε 2 > 0 ,

where α 1 = 2 m + 1 2 2 m + 1 4 p 2 m + 1 2 1 6 ( 0 , 1 ) . On the other hand, by the definition of p and p , we know that there exists a constant q that satisfies 5 3 ( 3 k + 2 ) p + 2 < q < m + 5 3 . In view of Gagliardo-Nirenberg’s inequality and Lemma 3.6, we obtain

(3.49) Ω u q = u m + 1 2 L 2 q m + 1 2 q m + 1 c 4 u m + 1 2 L 2 α 2 u m + 1 2 L 2 m + 1 1 α 2 + u m + 1 2 L 2 m + 1 2 q m + 1 c 5 u m + 1 2 L 2 2 α 2 q m + 1 K 1 2 q ( 1 α 2 ) m + 1 + c 5 K 1 2 q m + 1 ( m + 1 ) 2 c 5 m + 1 α 2 q 4 K 1 2 2 α 2 α 2 Ω u m 1 u 2 + c 5 K 1 2 q m + 1 + 1 ,

and

(3.50) Ω v q ( m + 1 ) 2 c 6 m + 1 α 2 q 4 K 1 2 2 α 2 α 2 Ω v m 1 v 2 + c 6 K 1 2 q m + 1 + 1 ,

where α 2 = m + 1 2 m + 1 2 q m + 1 2 1 6 ( 0 , 1 ) . Next we need to deduce the boundedness of Ω w ( 3 k + 2 ) p . Then, through the standard L p L q estimates in Lemma 2.4, Lemma 3.5, (3.49), and (3.50), we observe that

(3.51) w ( , t ) L ( 3 k + 2 ) p e t ( Δ 1 ) w 0 L ( 3 k + 2 ) p + t τ t e ( t s ) ( Δ 1 ) ( u + v ) L ( 3 k + 2 ) p d s c 7 + c 8 t τ t 1 + ( t s ) 3 2 ( 1 q 1 ( 3 k + 2 ) p ) e ( λ 1 + 1 ) ( t s ) u L q d s + c 9 t τ t 1 + ( t s ) 3 2 ( 1 q 1 ( 3 k + 2 ) p ) e ( λ 1 + 1 ) ( t s ) v L q d s c 7 + c 8 t τ t 1 + ( t s ) p ( 9 k + 6 ) 3 q 2 ( q 1 ) p ( 3 k + 2 ) e ( ( λ 1 + 1 ) q q 1 ) ( t s ) d s q 1 q t τ t u L q q d s 1 q + c 9 t τ t 1 + ( t s ) p ( 9 k + 6 ) 3 q 2 ( q 1 ) p ( 3 k + 2 ) e ( ( λ 1 + 1 ) q q 1 ) ( t s ) d s q 1 q t τ t v L q q d s 1 q c 10 + c 10 ( m + 1 ) 2 c 4 m + 1 α 2 q 4 K 1 2 2 α 2 α 2 K 8 + K 1 2 q m + 1 + 1 1 q C 10 , for all t ( 0 , T max ) .

Taking ε 1 = 16 C 10 3 k + 2 c 2 m ( 2 m + 1 ) 2 χ 1 4 , ε 2 = 16 C 10 3 k + 2 c 3 m ( 2 m + 1 ) 2 χ 2 4 , and using (3.46)–(3.48), and (3.51), we have

(3.52) m χ 1 2 4 Ω u 2 w 3 k + 2 + m χ 2 2 4 Ω v 2 w 3 k + 2 m 4 Ω u 2 m 1 u 2 + m 4 Ω v 2 m 1 v 2 + C 8 + C 9 ,

which, combined with (3.45), implies that

(3.53) 1 m + 1 d d t Ω u m + 1 + Ω v m + 1 + Ω u m + 1 + Ω v m + 1 + m 4 Ω u 2 m 1 u 2 + m 4 Ω v 2 m 1 v 2 + μ 1 2 Ω u m + 2 + μ 2 2 Ω v m + 2 m χ 1 2 + m χ 2 2 4 Ω w k 2 w 4 + C 8 + C 9 + 2 m + 1 ( μ 1 + 1 ) m + 2 μ 1 m + 1 Ω + 2 m + 1 ( μ 2 + 1 ) m + 2 μ 2 m + 1 Ω , for all t ( 0 , T max ) .

This together with (3.32) and Lemma 2.2 yields

(3.54) Ω u m + 1 + Ω v m + 1 c 10 v 0 L m + 1 m + 1 + u 0 L m + 1 m + 1 + m χ 1 2 + m χ 2 2 4 K 8 + C 8 + C 9 + ( μ 1 + 1 ) m + 2 μ 1 m + 1 + ( μ 2 + 1 ) m + 2 μ 2 m + 1 , for all t ( 0 , T max ) .

Consequently, integrating (3.53) over ( t , t + τ ) gives

t t + τ Ω u m + 2 + t t + τ Ω v m + 2 c 11 1 μ 1 + 1 μ 2 v 0 L m + 1 m + 1 + u 0 L m + 1 m + 1 + m χ 1 2 + m χ 2 2 4 K 8 + C 8 + C 9 + ( μ 1 + 1 ) m + 2 μ 1 m + 1 + ( μ 2 + 1 ) m + 2 μ 2 m + 1 , for all t ( 0 , T ˜ max ) .

Thus, the proof is complete.□

Lemma 3.7

Let the assumptions in Theorem 1.2 hold. If m > 1 2 and 0 < k < 1 , then there exist constants K 11 K 11 ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) > 0 and K 12 K 11 ( m , χ 1 , χ 2 , μ 1 , μ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , w 0 W 1 , p ) > 0 independent of t such that

(3.55) w ( , t ) L K 11 , for a l l t ( 0 , T max ) ,

and

(3.56) t t + τ Ω w ( , s ) 4 K 12 , for a l l t ( 0 , T ˜ max ) .

Proof

Similar to the proof of Lemma 3.2, we employ the standard L p L q estimates in Lemma 2.4 and (3.43) to obtain

w ( , t ) L e t ( Δ 1 ) w 0 L + t τ t e ( t s ) ( Δ 1 ) ( u + v ) L d s c 1 + c 2 t τ t 1 + ( t s ) 3 2 ( m + 2 ) e ( λ 1 + 1 ) ( t s ) u L m + 2 d s + c 2 t τ t 1 + ( t s ) 3 2 ( m + 2 ) e ( λ 1 + 1 ) ( t s ) v L m + 2 d s c 1 + c 2 t τ t 1 + ( t s ) 3 2 ( m + 1 ) e ( ( λ 1 + 1 ) ( m + 2 ) m + 1 ) ( t s ) d s m + 1 m + 2 t τ t v L m + 2 m + 2 d s 1 m + 2 c 1 + c 3 K 10 1 m + 2 , for all t ( 0 , T max ) .

Furthermore, applying (3.32), we can obtain

(3.57) t t + τ Ω w 4 w L 2 k t t + τ Ω w k 2 w 4 K 8 w L 2 k .

The proof of this lemma is complete.□

Lemma 3.8

Let the assumptions in Theorem 1.2 hold. If m > 1 2 and 0 < k < 1 , then there exists a constant K 13 > 0 independent of t such that

(3.58) u ( , t ) L 2 + v ( , t ) L 2 K 13 , for a l l t ( 0 , T max ) .

Proof

Multiplying the first equation by u and the second equation by v , then integrating the result over Ω , and applying the fact the boundedness of w L , we can obtain

1 2 d d t Ω u 2 + Ω v 2 + Ω u 2 + Ω v 2 + μ 1 Ω u 3 + μ 2 Ω v 3 Ω ( u + 1 ) m u 2 Ω ( v + 1 ) m v 2 χ 1 Ω u w k u w χ 2 Ω v w k v w + μ 1 2 Ω u 3 + μ 2 2 Ω v 3 + c 1 Ω ( u + 1 ) m u 2 Ω ( v + 1 ) m v 2 + c 2 Ω ( u + 1 ) u w + c 2 Ω ( v + 1 ) v w + μ 1 2 Ω u 3 + μ 2 2 Ω v 3 + c 1 1 2 Ω ( u + 1 ) m u 2 1 2 Ω ( v + 1 ) m v 2 + c 3 Ω ( u + 1 ) 2 m w 2 + c 3 Ω ( v + 1 ) 2 m w 2 + μ 1 2 Ω u 3 + μ 2 2 Ω v 3 + c 1 1 2 Ω ( u + 1 ) m u 2 1 2 Ω ( v + 1 ) m v 2 + c 3 2 Ω ( u + 1 ) 4 2 m + c 3 2 Ω ( v + 1 ) 4 2 m + c 3 Ω v 4 + μ 1 2 Ω u 3 + μ 2 2 Ω v 3 + c 1 1 2 Ω ( u + 1 ) m u 2 1 2 Ω ( v + 1 ) m v 2 + 3 μ 1 4 Ω u 3 + 3 μ 2 4 Ω v 3 + c 3 Ω v 4 + c 4 ,

which gives

1 2 d d t Ω u 2 + Ω v 2 + Ω u 2 + Ω v 2 + μ 1 4 Ω u 3 + μ 2 4 Ω v 3 + 1 2 Ω ( u + 1 ) m u 2 + 1 2 Ω ( v + 1 ) m v 2 c 3 Ω v 4 + c 4 ,

for all t ( 0 , T max ) . Finally, applying (3.56) and Lemma 2.2, we complete the proof of Lemma 3.8.□

3.3 Boundedness of u ( , t ) L and v ( , t ) L for n = 2 , 3

Lemma 3.9

Let the assumptions in Theorem 1.1 or Theorem 1.2 hold, then for all p > 1 , there holds

(3.59) u ( , t ) L p + v ( , t ) L p + w ( , t ) L K 14 , for a l l t ( 0 , T max ) ,

where K 14 > 0 is a constant independent of t.

Proof

Thanks to Lemma 2.3 and the boundedness of u L 2 and v L 2 , we have

(3.60) w L 4 c 1 , for all t ( 0 , T max ) .

Multiplying the equation of (1.1) by u p 1 with p > 1 , integrating the result over Ω , and applying (3.60), we can use Young’s inequality and Hölder’s inequality to obtain

(3.61) 1 p d d t Ω u p + Ω u p + μ 1 Ω u p + 1 ( p 1 ) Ω u p 2 ( u + 1 ) m u 2 ( p 1 ) χ 1 Ω u p 1 w k u w + μ 1 2 Ω u p + 1 + c 2 ( p 1 ) Ω u p 2 ( u + 1 ) m u 2 + c 3 ( p 1 ) χ 1 Ω u p 1 u w + μ 1 2 Ω u p + 1 + c 2 ( p 1 ) 2 Ω u p 2 u 2 + ( p 1 ) χ 1 2 c 3 2 2 Ω u p w 2 + μ 1 2 Ω u p + 1 + c 2 ( p 1 ) 2 Ω u p 2 u 2 + ( p 1 ) χ 1 2 c 1 2 c 3 2 2 Ω u 2 p 1 2 + μ 1 2 Ω u p + 1 + c 2 ,

for all t ( 0 , T max ) . Hence, with the boundedness of u L 2 and v L 2 , we use Gagliardo-Nirenberg’s inequality to obtain

( p 1 ) χ 1 2 c 1 2 c 3 2 2 Ω u 2 p 1 2 = ( p 1 ) χ 1 2 c 1 2 c 3 2 2 u p 2 L 4 2 c 4 u p 2 L 2 α u p 2 L 4 p 1 α + u p 2 L 4 p 2 ( p 1 ) 4 Ω u p 2 u 2 + c 5 ,

where α = p 1 4 p 4 + 1 n 1 2 ( 0 , 1 ) . Combining (3.61), we have

(3.62) 1 p d d t Ω u p + Ω u p c 6 , for all t ( 0 , T max ) .

Finally, applying Grönwall’s inequality to (3.62), we obtain u L p c 7 , for all t ( 0 , T max ) . Similarly, we can obtain v L p c 8 , for all t ( 0 , T max ) . Furthermore, we can employ Lemma 2.3 to obtain w L c 9 , for all t ( 0 , T max ) . Thus, the proof is complete.□

Proof of Theorems 1.1 and 1.2

Because of Lemma 3.9, we use the Moser iteration procedure (cf. [1] or [16,3436,46]) or referring to (Lemma A.1 of [33]) to obtain

(3.63) u L + v L c 1 , for all t ( 0 , T max ) ,

which alongside the extension criterion in Lemma 2.1, proves Theorems 1.1 and 1.2.□

4 Global stability

Inspired by [4], we shall study the global stability of solutions by constructing some proper Lyapunov functionals in this section.

4.1 Case of weakly competitive species

In this subsection, we first study the global stability of the weakly competitive case ( a 1 ( 0 , 1 ) , a 2 ( 0 , 1 ) ) . We introduce the following energy functional:

(4.1) E 1 ( t ) Ω u ( , t ) u * u * ln u ( , t ) u * + μ 1 a 1 μ 2 a 2 Ω v ( , t ) v * v * ln v ( , t ) v * + δ 2 Ω ( w ( , t ) w * ) 2 E u ( t ) + μ 1 a 1 μ 2 a 2 E v ( t ) + δ 2 E w ( t ) , t > 0 ,

and

(4.2) F ( t ) Ω u ( , t ) u ( , t ) 2 + Ω v ( , t ) v ( , t ) 2 + Ω w ( , t ) 2 + Ω ( u ( , t ) u * ) 2 + Ω ( v ( , t ) v * ) 2 + Ω ( w ( , t ) w * ) 2 , t > 0 ,

where α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and δ > 0 .

Lemma 4.1

Assume that the conditions in either Theorem 1.1 or Theorem 1.2 hold. If one of the following conditions

  1. 0 < k < m + 2 2 , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 2 ,

  2. 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 3 ,

is satisfied, then there exist μ 1 * > 0 , μ 2 * > 0 , δ > 0 , and ε > 0 such that when μ 1 > μ 1 * and μ 2 > μ 2 * ,

(4.3) E 1 ( t ) 0 , for a l l t > 0 ,

and

(4.4) d d t E 1 ( t ) ε F ( t ) , for a l l t > 0 ,

where μ 1 * and μ 2 * denote constants depending on m , χ 1 , χ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , and w 0 W 1 , p , as explained in the proof of this lemma.

Proof

First, we show that E 1 ( t ) 0 . Let f ( y ) y u * ln y for y > 0 , and using Taylor’s expansion, we can obtain

u u * u * ln u u * = f ( u ) f ( u * ) = f ( u * ) ( u u * ) + 1 2 f ( η ) ( u u * ) 2 = u * 2 η 2 ( u u * ) 2 0 ,

where η is between u and u * . From this we infer that E u 0 , and a parallel argument shows that E v 0 . Hence, E 1 ( t ) = E u ( t ) + μ 1 a 1 μ 2 a 2 E v ( t ) + δ 2 E w ( t ) 0 .

We begin by dealing with the energy functional,

(4.5) d d t E u ( t ) = Ω u t u * u u t = Ω μ 1 ( u u * ) ( 1 u a 1 v ) u * Ω ( u + 1 ) m u u 2 χ 1 u * Ω w k u u w = μ 1 Ω ( u u * ) 2 μ 1 a 1 Ω ( u u * ) ( v v * ) u * Ω ( u + 1 ) m u u 2 χ 1 u * Ω w k u u w , for all t > 0 ,

(4.6) d d t E v ( t ) = μ 2 Ω ( v v * ) 2 μ 2 a 2 Ω ( u u * ) ( v v * ) v * Ω ( v + 1 ) m v v 2 χ 2 v * Ω w k v v w , for all t > 0 ,

and

(4.7) d d t E w ( t ) = 2 Ω w 2 2 Ω ( w w * ) 2 + 2 Ω ( w w * ) ( u u * ) + 2 Ω ( w w * ) ( v v * ) , for all t > 0 .

Here we have made full use of (1.5). Combining (4.5), (4.6), and (4.7), we have

(4.8) d d t E 1 ( t ) = Ω X A X T Ω Y B Y T ,

where X ( x , t ) ( u u * , v v * , w w * ) , Y ( x , t ) ( u u , v v , w ) , and A , B are symmetric matrices defined by

A μ 1 μ 1 a 1 δ 2 μ 1 a 1 μ 1 a 1 a 2 δ 2 δ 2 δ 2 δ and B u * ( u + 1 ) m 0 χ 1 u * w k 2 0 v * ( v + 1 ) m μ 1 a 1 μ 2 a 2 χ 2 v * w k μ 1 a 1 2 μ 2 a 2 χ 1 u * w k 2 χ 2 v * w k μ 1 a 1 2 μ 2 a 2 δ .

Further, to obtain (4.4), we only need to prove that A and B are positive definite. It is worth noting that, by combining Lemmas 2.63.2 and Lemmas 3.43.7, we can claim that when μ 1 , μ 2 > 1 ,

(4.9) w L < M 1 μ 1 1 m + 2 + μ 2 1 m + 2 + M 2 ( 1 μ 1 γ 1 + 1 μ 2 γ 1 ) + M 3 < M 1 ( μ 1 1 m + 2 + μ 2 1 m + 2 ) + 2 M 2 + M 3 + 1 M 4 ( μ 1 , μ 2 ) , for n = 2 ,

and

(4.10) w L < M 5 ( 1 μ 1 γ 2 + 1 μ 2 γ 2 ) μ 1 6 k + 4 ( 2 m 1 ) m + 5 3 ( m + 2 ) + μ 2 6 k + 4 ( 2 m 1 ) m + 5 3 ( m + 2 ) + μ 1 1 m + 2 + μ 2 1 m + 2 + M 6 1 μ 1 γ 3 + 1 μ 2 γ 3 + M 7 < 2 M 5 μ 1 6 k + 4 ( 2 m 1 ) m + 5 3 ( m + 2 ) + μ 2 6 k + 4 ( 2 m 1 ) m + 5 3 ( m + 2 ) + μ 1 1 m + 2 + μ 2 1 m + 2 + 2 M 6 + M 7 + 1 M 8 ( μ 1 , μ 2 ) , for n = 3 ,

where M 1 M 3 , M 5 M 7 , and γ i γ i ( k , m ) ( i = 1 , 2 , 3 ) are positive constants independent of μ 1 and μ 2 . By calculation, it can be seen that if n = 2 and 0 < k < m + 2 2 , then there exist constants μ 1 and μ 2 (refer Remark 4.1 for details) such that, when μ 1 > μ 1 and μ 2 > μ 2 , we have

(4.11) μ 1 > u * χ 1 2 M 4 ( μ 1 , μ 2 ) 2 k 4 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 v * χ 2 2 M 4 ( μ 1 , μ 2 ) 2 k a 1 4 μ 2 a 2 > u * χ 1 2 w 2 k 4 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 v * χ 2 2 w 2 k a 1 4 μ 2 a 2 ,

and

(4.12) μ 2 > v * χ 2 2 M 4 ( μ 1 , μ 2 ) 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) > v * χ 2 2 w 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) .

With the fact 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } when n = 3 , we have

(4.13) ( 6 k + 4 ) 2 k ( 2 m + 1 ) m + 5 3 ( m + 2 ) < 1 .

Similarly, there exist constants μ 1 and μ 2 such that, provided μ 1 > μ 1 and μ 2 > μ 2 , it follows that

(4.14) μ 1 > u * χ 1 2 M 8 ( μ 1 , μ 2 ) 2 k 4 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 v * χ 2 2 M 8 ( μ 1 , μ 2 ) 2 k a 1 4 μ 2 a 2 > u * χ 1 2 w 2 k 4 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 v * χ 2 2 w 2 k a 1 4 μ 2 a 2 ,

and

(4.15) μ 2 > v * χ 2 2 M 8 ( μ 1 , μ 2 ) 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) > v * χ 2 2 w 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) .

Hence, we can find an appropriate δ such that

(4.16) χ 2 2 v * μ 1 a 1 4 μ 2 a 2 + χ 1 2 u * 4 w 2 k < δ < 4 μ 1 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 .

If (4.16) holds, we can check that

A 1 μ 1 > 0 , A 2 μ 1 μ 1 a 1 μ 1 a 1 μ 1 a 1 a 2 > 0 ,

(4.17) A = μ 1 μ 1 a 1 δ a 2 δ 2 4 μ 1 a 1 μ 1 a 1 δ δ 2 4 + δ 2 μ 1 a 1 δ 2 μ 1 a 1 δ 2 a 2 = μ 1 δ μ 1 a 1 a 2 + a 1 δ 2 δ 4 a 1 δ 4 a 2 μ 1 a 1 2 > 0 ,

and

B 1 u * ( u + 1 ) m > 0 , B 2 u * ( u + 1 ) m 0 0 v * ( v + 1 ) m μ 1 a 1 μ 2 a 2 > 0 ,

B = u * ( u + 1 ) m δ v * ( v + 1 ) m μ 1 a 1 μ 2 a 2 χ 2 v * w k μ 1 a 1 2 μ 2 a 2 2 χ 1 u * w k 2 2 v * ( v + 1 ) m μ 1 a 1 μ 2 a 2 = μ 1 a 1 u * v * μ 2 a 2 ( u + 1 ) m ( v + 1 ) m δ v * μ 1 a 1 χ 2 2 w 2 k 4 μ 2 a 2 ( v + 1 ) m u * χ 1 2 w 2 k 4 ( u + 1 ) m μ 1 a 1 u * v * μ 2 a 2 ( u + 1 ) m ( v + 1 ) m δ v * μ 1 a 1 χ 2 2 w 2 k 4 μ 2 a 2 u * χ 1 2 w 2 k 4 > 0 ,

which imply that the matrices A and B are positive definite. Hence, there exists a positive constant ε such that

(4.18) d d t E 1 ( t ) = Ω X A X T Ω Y B Y T ε Ω Y 2 ε Ω X 2 = ε F ( t ) .

In conclusion, by taking μ 1 * > max { μ 1 , μ 1 } and μ 2 * > max { μ 2 , μ 2 } , the proof is complete.□

Remark 4.1

We will now explain in detail the existence of μ 1 , μ 2 , μ 1 , μ 2 . For the case n = 2 , in order to simplify the notation, we first assume that

(4.19) u * χ 1 2 M 4 ( μ 1 , μ 2 ) 2 k 4 a 1 ( 1 a 1 a 2 ) a 1 + a 2 2 a 1 a 2 v * χ 2 2 M 4 ( μ 1 , μ 2 ) 2 k a 1 4 μ 2 a 2 D 1 M 4 ( μ 1 , μ 2 ) 2 k D 2 D 3 M 4 ( μ 1 , μ 2 ) 2 k μ 2 .

In the following, based on (4.9), (4.11), and (4.12), we need to show that when μ 1 and μ 2 are sufficiently large, the following inequalities hold:

μ 1 > D 1 D 2 + D 1 D 3 D 2 2 c 1 μ 1 2 k m + 2 + μ 2 2 k m + 2 + 1 > D 1 D 2 + D 1 D 3 D 2 2 M 4 ( μ 1 , μ 2 ) 2 k ,

and

μ 2 > D 3 D 2 + 1 c 1 μ 1 2 k m + 2 + μ 2 2 k m + 2 + 1 > D 3 D 2 + 1 M 4 ( μ 1 , μ 2 ) 2 k ,

which give

(4.20) μ 1 1 2 k m + 2 > D 1 D 2 + D 1 D 3 D 2 2 c 1 1 + μ 2 μ 1 2 k m + 2 + 1 μ 1 2 k m + 2 ,

and

(4.21) μ 2 1 2 k m + 2 > D 3 D 2 + 1 c 1 μ 1 μ 2 2 k m + 2 + 1 + 1 μ 2 2 k m + 2 .

Combining μ 1 , μ 2 > 1 and μ 1 = β μ 2   ( β > 0 ) , we deduce that if μ 1 and μ 2 satisfy

μ 1 1 2 k m + 2 > 2 + 1 β 2 k m + 2 c 1 D 1 D 2 + D 1 D 3 D 2 2 ,

and

μ 2 1 2 k m + 2 > D 3 D 2 + 1 c 1 β 2 k m + 2 + 2 ,

then (4.11) and (4.12) hold. Let us denote

μ 1 = max 2 + 1 β 2 k m + 2 c 1 D 1 D 2 + D 1 D 3 D 2 2 1 1 2 k m + 2 , β D 3 D 2 + 1 c 1 β 2 k m + 2 + 2 1 1 2 k m + 2 , 1 ,

and

μ 2 = max 1 β 2 + 1 β 2 k m + 2 c 1 D 1 D 2 + D 1 D 3 D 2 2 1 1 2 k m + 2 D 3 D 2 + 1 c 1 β 2 k m + 2 + 2 1 1 2 k m + 2 , 1 .

With the fact 1 2 k m + 2 > 0 , we can conclude that when μ 1 > μ 1 and μ 2 > μ 2 , (4.11) and (4.12) hold. For the case n = 3 , following a derivation similar to the above, we likewise obtain the existence of μ 1 and μ 2 .

Lemma 4.2

Assume that the conditions in either Theorem 1.1 or Theorem 1.2 hold. If one of the following conditions

  1. 0 < k < m + 2 2 , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 2 ,

  2. 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 3 ,

is satisfied, then there exist μ 1 * > 0 and μ 2 * > 0 such that when μ 1 > μ 1 * and μ 2 > μ 2 * ,

lim t ( u u * L + v v * L + w w * L ) = 0 ,

where μ 1 * and μ 2 * denote constants depending on m , χ 1 , χ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , and w 0 W 1 , p ; for details, refer the proof of Lemma 4.1.

Proof

First, we define f ( t ) Ω ( u u * ) 2 + Ω ( v v * ) 2 + Ω ( w w * ) 2 for t 0 . Then, in view of Lemma 4.1, it follows that

(4.22) d d t E 1 ( t ) ε F ( t ) ε f ( t ) , for all t > 0 ,

which together with (4.3) implies

1 f ( t ) 1 ε ( E 1 ( 1 ) E 1 ( t ) ) E 1 ( 1 ) ε < .

On the other hand, according to Hölder regularity in quasilinear parabolic equations [28, Theorem 1.3, Remark 1.4], we have

u C 2 + θ , 1 + θ 2 ( Ω ¯ × [ t , t + 1 ] ) + v C 2 + θ , 1 + θ 2 ( Ω ¯ × [ t , t + 1 ] ) + w C 2 + θ , 1 + θ 2 ( Ω ¯ × [ t , t + 1 ] ) C , for all t 1 .

It can be concluded from [4, Lemma 3.1] that

(4.23) f ( t ) = Ω ( u u * ) 2 + Ω ( v v * ) 2 + Ω ( w w * ) 2 0 , as .

Thus, Gagliardo-Nirenberg’s inequality and (4.23) entail that

u u * L c 1 u L n n + 2 u u * L 2 2 n + 2 + u u * L 2 0 , t .

In a similar way, we can derive v v * L 0 and w * w * L 0 . Thus, the proof is complete.□

4.2 Case of strongly asymmetric systems

In this subsection, we study the global stability of the strongly asymmetric case ( α 1 1 , α 2 ( 0 , 1 ) ) . We introduce the following energy functional:

E 2 ( t ) Ω u ( , t ) + μ 1 a 1 μ 2 a 2 Ω ( v ( , t ) 1 ln v ( , t ) ) + δ 2 Ω ( w ( , t ) 1 ) 2 , t > 0 ,

and

F 2 ( t ) Ω v ( , t ) v ( , t ) 2 + Ω w ( , t ) 2 + Ω u 2 ( , t ) + Ω ( v ( , t ) 1 ) 2 + Ω ( w ( , t ) 1 ) 2 , t > 0 ,

where a 1 ( 1 , a 1 ] such that a 1 a 2 < 1 .

Lemma 4.3

Assume that the conditions in either Theorem 1.1 or Theorem 1.2 hold. If one of the following conditions

  1. 0 < k < m + 2 2 , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 2 ,

  2. 0 < k < min { 8 + 64 + 48 ( 2 m 1 ) m + 5 3 ( m + 2 ) 24 , m + 2 2 } , α 1 ( 0 , 1 ) , α 2 ( 0 , 1 ) , and μ 1 = β μ 2 (for any given β > 0 ) in n = 3 ,

is satisfied, then there exists a constant μ 2 > 0 such that when μ 2 > μ 2 ,

(4.24) lim t ( u L + v 1 L + w 1 L ) = 0 ,

where μ 2 is a constant depending on m , χ 1 , χ 2 , a 1 , a 2 , Ω , u 0 L , v 0 L , and w 0 W 1 , p ; for details, refer the proof of this lemma.

Proof

Using a procedure analogous to (4.11)–(4.15), it follows that we can find μ 2 > 0 such that when μ 2 > μ 2 and the conditions of Lemma 4.3 are satisfied, we obtain

μ 2 > χ 2 2 M 4 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) > χ 2 2 w 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) , in n = 2 ,

and

μ 2 > χ 2 2 M 8 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) > χ 2 2 w 2 k ( a 1 + a 2 2 a 1 a 2 ) 16 a 2 ( 1 a 1 a 2 ) , in n = 3 ,

through (4.9) and (4.10). Similar to the proof process of [4, Lemma 3.4], we know that semi trivial steady state (0, 1, 1) is globally asymptotically stable. Thus, the proof is complete.□

Acknowledgments

The authors would like to express their deep thanks to the referee’s valuable suggestions for the revision and improvement of the manuscript.

  1. Funding information: This work is supported by the Doctoral Students’ Scientific Research and Innovation Ability Enhancement Project of Jilin University (No. 2024KC037).

  2. Author contributions: All authors contributed equally to the writing of this article. All authors read and approved the final manuscript.

  3. Conflict of interest: The authors state no conflict of interest.

  4. Data availability statement: No data were used for the research described in the article.

References

[1] N. D. Alikakos, Lp bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), 827–868, https://doi.org/10.1080/03605307908820113. Search in Google Scholar

[2] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), 13–75, https://doi.org/10.57262/die/1371586185. Search in Google Scholar

[3] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte zur Mathematik, Stuttgart, 1993, pp. 9–126, https://doi.org/10.1007/978-3-663-11336-2_1. Search in Google Scholar

[4] X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J. 65 (2016), 553–583, https://doi.org/10.1512/iumj.2016.65.5776. Search in Google Scholar

[5] X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904, https://doi.org/10.3934/dcds.2015.35.1891. Search in Google Scholar

[6] T. Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis, J. Math. Anal. Appl. 326 (2007), 1410–1426, https://doi.org/10.1016/j.jmaa.2006.03.080. Search in Google Scholar

[7] T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations 252 (2012), 5832–5851, https://doi.org/10.1016/j.jde.2012.01.045. Search in Google Scholar

[8] T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations 258 (2015), 2080–2113, https://doi.org/10.1016/j.jde.2014.12.004. Search in Google Scholar

[9] M. Ding, W. Wang, and S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl. 49 (2019), 286–311, https://doi.org/10.1016/j.nonrwa.2019.03.009. Search in Google Scholar

[10] M. Ding, W. Wang, S. Zhou, and S. Zheng, Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production, J. Differential Equations 268 (2020), 6729–6777, https://doi.org/10.1016/j.jde.2019.11.052. Search in Google Scholar

[11] K. Fujie, A. Ito, and M. Winkler, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst. 36 (2016), 151–169, https://doi.org/10.3934/dcds.2016.36.151. Search in Google Scholar

[12] M. Fuest, Global solutions near homogeneous steady states in a multidimensional population model with both predator- and prey-taxis, SIAM J. Math. Anal. 52 (2020), 5865–5891, https://doi.org/10.1137/20M1344536. Search in Google Scholar

[13] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2025), 52–107, https://doi.org/10.1016/j.jde.2004.10.022. Search in Google Scholar

[14] Y. Huili, On a quasilinear two-species chemotaxis system with general kinetic functions and interspecific competition, Z. Angew. Math. Phys. 75 (2024), 24pp, https://doi.org/10.1007/s00033-024-02325-5. Search in Google Scholar

[15] Z. Jiao, I. Jadlovská, and T. Li, Global behavior in a two-species chemotaxis-competition system with signal-dependent sensitivities and nonlinear productions, Appl. Math. Optim. 90 (2024), 34pp, https://doi.org/10.1007/s00245-024-10137-2. Search in Google Scholar

[16] H. Jin, Y. Kim, and Z. Wang, Boundedness, stabilization and pattern formation driven by density suppressed motility, SIAM J. Appl. Math. 78 (2018), 1632–1657, https://doi.org/10.1137/17M1144647. Search in Google Scholar

[17] H. Jin and Z. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math. 32 (2021), 652–682, https://doi.org/10.1017/S0956792520000248. Search in Google Scholar

[18] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl. 343 (2008), 379–398, https://doi.org/10.1016/j.jmaa.2008.01.005. Search in Google Scholar

[19] J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl. 24 (2017), 33pp, https://doi.org/10.1007/s00030-017-0472-8. Search in Google Scholar

[20] K. Li, J. Zheng, and H. Tang, Boundedness and asymptotic behavior in a parabolic-elliptic pursuit-evasion system with signal-dependent diffusion and sensitivity, Z. Angew. Math. Phys. 76 (2025), 26pp, https://doi.org/10.1007/s00033-025-02443-8. Search in Google Scholar

[21] S. Li and C. Liu, Global boundedness and stability to a three-species food chain model with density-dependent motion, Commun. Pure Appl. Anal. 24 (6) (2025), 1019–1047, https://doi.org/10.3934/cpaa.2025022. Search in Google Scholar

[22] M. Mizukami, Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 269–278, https://doi.org/10.3934/dcdss.2020015. Search in Google Scholar

[23] N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré, C Anal. Non Linéaire 31 (2014), 851–875, https://doi.org/10.1016/j.anihpc.2013.07.007. Search in Google Scholar

[24] E. Pan and C. Liu, Global boundedness of solutions to a food chain model with nonlinear taxis sensitivity, Appl. Math. Optim. 91 (2025), no. 1, Paper No. 6, 43pp., https://doi.org/10.1007/s00245-024-10208-4. Search in Google Scholar

[25] X. Pan, C. Mu, and W. Tao, On the strongly competitive case in a fully parabolic two-species chemotaxis system with Lotka-Volterra competitive kinetics, J. Differential Equations 354 (2023), 90–132, https://doi.org/10.1016/j.jde.2023.01.008. Search in Google Scholar

[26] X. Pan and L. Wang, Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production, Commun. Pure Appl. Anal. 20 (2021), 2211–2236, https://doi.org/10.3934/cpaa.2021064. Search in Google Scholar

[27] X. Pan, L. Wang, J. Zhang, and J. Wang, Boundedness in a three-dimensional two-species chemotaxis system with two chemicals, Z. Angew. Math. Phys. 71 (2020), 15, https://doi.org/10.1007/s00033-020-1248-2. Search in Google Scholar

[28] M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations 103 (1993), 146–178, https://doi.org/10.1006/jdeq.1993.1045. Search in Google Scholar

[29] G. Ren and H. Ma, Global existence in a chemotaxis system with singular sensitivity and signal production, Discrete Contin. Dyn. Syst. Ser. B 27 (2022), 343–360, https://doi.org/10.3934/dcdsb.2021045. Search in Google Scholar

[30] G. Ren and X. Zhou, Global boundedness in a two-dimensional chemotaxis system with nonlinear diffusion and singular sensitivity, Adv. Nonlinear Anal. 13 (2024), 20pp, https://doi.org/10.1515/anona-2023-0125. Search in Google Scholar

[31] P. Souplet and P. Quittner, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Birkhäuser Adv. Texts, Basel/Boston/Berlin, 2007. https://doi.org/10.1007/978-3-7643-8442-5.Search in Google Scholar

[32] C. Stinner, C. Surulescu, and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM. J. Math. Anal. 46 (2014), 1969–2007, https://doi.org/10.1137/13094058X. Search in Google Scholar

[33] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692–715, https://doi.org/10.1016/j.jde.2011.08.019. Search in Google Scholar

[34] Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci. 23 (2013), 1–36, https://doi.org/10.1142/S0218202512500443. Search in Google Scholar

[35] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal. 43 (2011), 685–704, https://doi.org/10.1137/100802943. Search in Google Scholar

[36] Y. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci. 27 (2017), 1645–1683, https://doi.org/10.1142/S0218202517500282. Search in Google Scholar

[37] M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal. 15 (2016), 243–260, https://doi.org/10.3934/cpaa.2016.15.243. Search in Google Scholar

[38] C. Wang, P. Zheng, and W. Shan, On a quasilinear fully parabolic predator-prey model with indirect pursuit-evasion interaction, J. Evol. Equ. 23 (2023), 39, https://doi.org/10.1007/s00028-023-00931-w. Search in Google Scholar

[39] Y. Wang and J. Liu, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Nonlinear Anal. Real World Appl. 38 (2017), 113–130, https://doi.org/10.1016/j.nonrwa.2017.04.010. Search in Google Scholar

[40] M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, J. Differential Equations 266 (2019), 8034–8066, https://doi.org/10.1016/j.jde.2018.12.019. Search in Google Scholar

[41] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2010), 2889–2905, https://doi.org/10.1016/j.jde.2010.02.008. Search in Google Scholar

[42] M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?, Math. Methods Appl. Sci. 33 (2010), 12–24, https://doi.org/10.1002/mma.1146. Search in Google Scholar

[43] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations 35 (2010), 1516–1537, https://doi.org/10.1080/03605300903473426. Search in Google Scholar

[44] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci. 34 (2011), 176–190, https://doi.org/10.1002/mma.1346. Search in Google Scholar

[45] D. Yan and C. Liu, Global existence of solutions to a quasilinear three-species spatial food chain model, Z. Angew. Math. Phys. 76 (2025), no. 3, 98, 36, https://doi.org/10.1007/s00033-025-02483-0. Search in Google Scholar

[46] C. Yoon and Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker Planck diffusion, Acta Appl. Math. 149 (2017), 101–123, https://doi.org/10.1007/s10440-016-0089-7. Search in Google Scholar

[47] W. Zhang and Z. Liu, Global existence, boundedness and asymptotic behavior of classical solutions to a fully parabolic two-species chemotaxis-competition model with singular sensitivity, J. Differential Equations 391 (2024), 485–536, https://doi.org/10.1016/j.jde.2024.02.034. Search in Google Scholar

[48] W. Zhang and M. Xu, Global existence of classical solutions to a fully parabolic two-species chemotaxis model with singular sensitivity, Z. Angew. Math. Phys. 76 (2025), 21pp., https://doi.org/10.1007/s00033-025-02447-4. Search in Google Scholar

[49] X. Zhao and S. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., 68 (2017), 13pp., https://doi.org/10.1007/s00033-016-0749-5. Search in Google Scholar

[50] J. Zheng, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl. 431 (2015), 867–888, https://doi.org/10.1016/j.jmaa.2015.05.071. Search in Google Scholar

Received: 2025-04-22
Revised: 2025-09-21
Accepted: 2025-10-29
Published Online: 2025-11-15

© 2025 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Incompressible limit for the compressible viscoelastic fluids in critical space
  3. Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
  4. Intervals of bifurcation points for semilinear elliptic problems
  5. On multiplicity of solutions to nonlinear Dirac equation with local super-quadratic growth
  6. Entire radial bounded solutions for Leray-Lions equations of (p, q)-type
  7. Combinatorial pth Calabi flows for total geodesic curvatures in spherical background geometry
  8. Sharp upper bounds for the capacity in the hyperbolic and Euclidean spaces
  9. Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
  10. Existence and non-degeneracy of the normalized spike solutions to the fractional Schrödinger equations
  11. Existence results for non-coercive problems
  12. Ground states for Schrödinger-Poisson system with zero mass and the Coulomb critical exponent
  13. Geometric characterization of generalized Hajłasz-Sobolev embedding domains
  14. Subharmonic solutions of first-order Hamiltonian systems
  15. Sharp asymptotic expansions of entire large solutions to a class of k-Hessian equations with weights
  16. Stability of pyramidal traveling fronts in time-periodic reaction–diffusion equations with degenerate monostable and ignition nonlinearities
  17. Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
  18. Existence results of variable exponent double-phase multivalued elliptic inequalities with logarithmic perturbation and convections
  19. Homoclinic solutions in periodic partial difference equations
  20. Classical solution for compressible Navier-Stokes-Korteweg equations with zero sound speed
  21. Properties of minimizers for L2-subcritical Kirchhoff energy functionals
  22. Asymptotic behavior of global mild solutions to the Keller-Segel-Navier-Stokes system in Lorentz spaces
  23. Blow-up solutions to the Hartree-Fock type Schrödinger equation with the critical rotational speed
  24. Qualitative properties of solutions for dual fractional parabolic equations involving nonlocal Monge-Ampère operator
  25. Regularity for double-phase functionals with nearly linear growth and two modulating coefficients
  26. Uniform boundedness and compactness for the commutator of an extension of Riesz transform on stratified Lie groups
  27. Normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians
  28. Existence of positive radial solutions of general quasilinear elliptic systems
  29. Low Mach number and non-resistive limit of magnetohydrodynamic equations with large temperature variations in general bounded domains
  30. Sharp viscous shock waves for relaxation model with degeneracy
  31. Bifurcation and multiplicity results for critical problems involving the p-Grushin operator
  32. Asymptotic behavior of solutions of a free boundary model with seasonal succession and impulsive harvesting
  33. Blowing-up solutions concentrated along minimal submanifolds for some supercritical Hamiltonian systems on Riemannian manifolds
  34. Stability of rarefaction wave for relaxed compressible Navier-Stokes equations with density-dependent viscosity
  35. Singularity for the macroscopic production model with Chaplygin gas
  36. Global strong solution of compressible flow with spherically symmetric data and density-dependent viscosities
  37. Global dynamics of population-toxicant models with nonlocal dispersals
  38. α-Mean curvature flow of non-compact complete convex hypersurfaces and the evolution of level sets
  39. High-energy solutions for coupled Schrödinger systems with critical growth and lack of compactness
  40. On the structure and lifespan of smooth solutions for the two-dimensional hyperbolic geometric flow equation
  41. Well-posedness for physical vacuum free boundary problem of compressible Euler equations with time-dependent damping
  42. On the existence of solutions of infinite systems of Volterra-Hammerstein-Stieltjes integral equations
  43. Remark on the analyticity of the fractional Fokker-Planck equation
  44. Continuous dependence on initial data for damped fourth-order wave equation with strain term
  45. Unilateral problems for quasilinear operators with fractional Riesz gradients
  46. Boundedness of solutions to quasilinear elliptic systems
  47. Existence of positive solutions for critical p-Laplacian equation with critical Neumann boundary condition
  48. Non-local diffusion and pulse intervention in a faecal-oral model with moving infected fronts
  49. Nonsmooth analysis of doubly nonlinear second-order evolution equations with nonconvex energy functionals
  50. Qualitative properties of solutions to the viscoelastic beam equation with damping and logarithmic nonlinear source terms
  51. Shape of extremal functions for weighted Sobolev-type inequalities
  52. One-dimensional boundary blow up problem with a nonlocal term
  53. Doubling measure and regularity to K-quasiminimizers of double-phase energy
  54. General solutions of weakly delayed discrete systems in 3D
  55. Global well-posedness of a nonlinear Boussinesq-fluid-structure interaction system with large initial data
  56. Optimal large time behavior of the 3D rate type viscoelastic fluids
  57. Local well-posedness for the two-component Benjamin-Ono equation
  58. Self-similar blow-up solutions of the four-dimensional Schrödinger-Wave system
  59. Existence and stability of traveling waves in a Keller-Segel system with nonlinear stimulation
  60. Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
  61. On the global large regular solutions of the 1D degenerate compressible Navier-Stokes equations
  62. Normal forms of piecewise-smooth monodromic systems
  63. Fractional Dirichlet problems with singular and non-locally convective reaction
  64. Sharp forced waves of degenerate diffusion equations in shifting environments
  65. Global boundedness and stability of a quasilinear two-species chemotaxis-competition model with nonlinear sensitivities
  66. Non-existence, radial symmetry, monotonicity, and Liouville theorem of master equations with fractional p-Laplacian
  67. Global existence, asymptotic behavior, and finite time blow up of solutions for a class of generalized thermoelastic system with p-Laplacian
  68. Formation of singularities for a linearly degenerate hyperbolic system arising in magnetohydrodynamics
  69. Linear stability and bifurcation analysis for a free boundary problem arising in a double-layered tumor model
  70. Hopf's lemma, asymptotic radial symmetry, and monotonicity of solutions to the logarithmic Laplacian parabolic system
  71. Generalized quasi-linear fractional Wentzell problems
  72. Existence, symmetry, and regularity of ground states of a nonlinear Choquard equation in the hyperbolic space
  73. Normalized solutions for NLS equations with general nonlinearity on compact metric graphs
  74. Boundedness and global stability in a predator-prey chemotaxis system with indirect pursuit-evasion interaction and nonlocal kinetics
  75. Review Article
  76. Existence and stability of contact discontinuities to piston problems
Downloaded on 29.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/anona-2025-0129/html
Scroll to top button