Home Mathematics Blowing-up solutions concentrated along minimal submanifolds for some supercritical Hamiltonian systems on Riemannian manifolds
Article Open Access

Blowing-up solutions concentrated along minimal submanifolds for some supercritical Hamiltonian systems on Riemannian manifolds

  • Wenjing Chen and Zexi Wang EMAIL logo
Published/Copyright: August 13, 2025

Abstract

Let ( , g ) and ( K , κ ) be two Riemannian manifolds of dimensions N and m , respectively. Let ω C 2 ( ) satisfy ω > 0 . The warped product × ω K is the ( N + m ) -dimensional product manifold × K equipped with the metric g + ω 2 κ . We consider the following elliptic system:

(1) Δ g + ω 2 κ u + h ( x ) u = v p α ε , in  ( × ω K , g + ω 2 κ ) , Δ g + ω 2 κ v + h ( x ) v = u q β ε , in  ( × ω K , g + ω 2 κ ) , u , v > 0 , in  ( × ω K , g + ω 2 κ ) ,

where Δ g + ω 2 κ = div g + ω 2 κ denotes the Laplace-Beltrami operator on × ω K , h ( x ) is a C 1 -function on × ω K , α , β > 0 are the real numbers, ε > 0 is a small parameter, and ( p , q ) ( 1 , + ) × ( 1 , + ) satisfies 1 p + 1 + 1 q + 1 = N 2 N . For any integer k 2 , using the Lyapunov-Schmidt reduction, we prove that problem (1) admits a k -peak solution concentrated along an m -dimensional minimal submanifold of ( × ω K ) k as ε 0 .

MSC 2010: 58J05; 35J47; 35B33

1 Introduction

Let ( M , g ) be a n -dimensional smooth compact Riemannian manifold without boundary, where g denotes the metric tensor. We consider the following elliptic system:

(1.1) Δ g u + h ( x ) u = v p , in ( M , g ) , Δ g v + h ( x ) v = u q , in ( M , g ) , u , v > 0 , in ( M , g ) ,

where Δ g = div g is the Laplace-Beltrami operator on M , and h ( x ) is a C 1 -function on M , p , q > 0 .

The starting point on the study of system (1.1) is its scalar version

(1.2) Δ g u + h ( x ) u = u p , u > 0 , in  ( M , g ) .

If p ( 1 , 2 * 1 ) ( 2 * = 2 n n 2 if n 3 and 2 * = + if n = 1 , 2), by the compact embedding H g 1 ( M ) L g p ( M ) , one can obtain a solution of (1.2). Micheletti and Pistoia [26] also considered the following singularly perturbed nonlinear elliptic problem:

(1.3) ε 2 Δ g u + u = u p , u > 0 , in  ( M , g ) ,

where p ( 1 , 2 * 1 ) , n 2 , and ε > 0 is a small parameter. By performing the Lyapunov-Schmidt reduction procedure, they obtained a single blowing-up solution for (1.3). Successively, multiple blowing-up solutions and clustered solutions are constructed in [27] and [9] respectively (see also [7] for solutions concentrating at a submanifold).

In the critical case p = 2 * 1 , the situation is more complicated, and the existence of solutions for (1.2) is related to the position of the potential h with respect to the geometric potential

h g = n 2 4 ( n 1 ) Scal g ,

where Scal g is the scalar curvature of the manifold. Particularly, if h ( x ) h g , equation (1.2) is referred to as the Yamabe problem and it always has a solution (see, e.g., [1,32]).

The supercritical case p > 2 * 1 is even more difficult to deal with. Using the Lyapunov-Schmidt reduction, Micheletti et al. [28] first constructed a single blowing-up solution for (1.2) in asymptotically critical case (i.e., p = 2 * 1 ± ε with ε > 0 small enough). Here, a family of solutions u ε to (1.2) is said to blow up at ξ 0 M if there exists a family of points ξ ε M such that ξ ε ξ 0 and u ε ( ξ ε ) + as ε 0 . Since then, equation (1.2) has been studied extensively. For instance, sign-changing blowing-up solutions were studied in [11,30], multiple blowing-up solutions in [10], clustered solutions in [5], and sign-changing bubble tower solutions in [29], among others. Of particular interest is the result by Ghimenti et al. [14], who established the existence of a single blowing-up solution concentrated along a minimal submanifold.

If M is either a smooth bounded domain or R n , and h ( x ) = 0 , system (1.1) reduces to the following elliptic system:

(1.4) Δ u = v p , in Ω , Δ v = u q , in Ω , u , v > 0 , in Ω ,

called the Lane-Emden system, where n 3 . In this case, the critical hyperbola

(1.5) 1 p + 1 + 1 q + 1 = n 2 n

plays a similar role to the Sobolev exponent 2 * for the single equation. System (1.4) has received remarkable attention for decades. When Ω = R n , by applying the concentration compactness principle, Lions [25] found a positive least energy solution of (1.4)–(1.5), which is radially symmetric and radially decreasing. Wang [31] and Hulshof and Van der Vorst [20] independently proved the uniqueness of the positive least energy solution ( U 1,0 ( z ) , V 1,0 ( z ) ) to (1.4)–(1.5). Moreover, Frank et al. [13] established the non-degeneracy of (1.4)–(1.5) at each least energy solution. Using the Lyapunov-Schmidt reduction and the non-degeneracy result obtained in [13], Guo et al. [17] established the existence and non-degeneracy of multiple blowing-up solutions to (1.4)–(1.5) with two potentials. For more investigations about system (1.4) with Ω = R n , we can see [8,15].

If Ω is a smooth bounded domain, Kim and Pistoia [23] first built multiple blowing-up solutions for the following system:

Δ u = v p 1 v + ε ( α u + β 1 v ) , in Ω , Δ v = u q 1 u + ε ( α v + β 2 u ) , in Ω , u , v = 0 , on Ω ,

where n 8 , α , β 1 , β 2 R , ε > 0 is a small parameter, 1 < p < n 1 n 2 , and ( p , q ) satisfies (1.5). Meanwhile, they also found solutions to the following asymptotically critical system:

Δ u = v p α ε , in Ω , Δ v = u q β ε , in Ω , u , v > 0 , in Ω , u , v = 0 , on Ω ,

where n 4 , α , β > 0 , ε > 0 is a small parameter, 1 < p < n 1 n 2 , and ( p , q ) satisfies (1.5). Moreover, using the local Pohozaev identity, Guo et al. [16] proved its non-degeneracy. Recently, Jin and Kim [21] studied the Coron’s problem for the critical Lane-Emden system and established the existence, qualitative properties of positive solutions. Guo and Peng [19] considered sign-changing solutions to the slightly supercritical Lane-Emden system with Neumann boundary conditions. It is worth emphasizing that Guo et al. [18] obtained positive solutions with boundary layers concentrating along one or several submanifolds for the asymptotically critical Lane-Emden system. For more classical results regarding Hamiltonian systems in bounded domains, we refer the readers to [4,22] and references therein.

Now, for any integer 0 m n 1 , let

p n , m * = n m 2 n m

be the ( m + 1 ) st critical exponent. We remark that p n , m * = p n m , 0 * is nothing but the critical exponent for the Lane-Emden system in dimension n m . In particular, note that a point is a zero-dimensional manifold, it is natural to ask that does problem (1.1) have solutions blowing up and concentrating at a m-dimensional ( 1 m n 1 ) submanifold of M when 1 p + 1 + 1 q + 1 p n , m * ? In this case, it is easy to find that problem (1.1) is supercritical ( p n , m * > p n , 0 * ), and a major difficulty arises due to the lack of the Sobolev embedding, which makes variational methods and so on hard to apply. However, if the problem exhibits some symmetry or if the domain can be written as a product space, one can work in a lower-dimensional setting. This allows the avoidance of super-criticality issues in the ambient dimension. Therefore, in this article, we consider the case where ( M , g ) is a warped product manifold.

We recall the notion of warped product manifold introduced by Bishop and O’Neill in [3]. Let ( , g ) and ( K , κ ) be two Riemannian manifolds of dimensions N and m , respectively. Let ω C 2 ( ) , ω > 0 . The warped product M × ω K is the n N + m -dimensional product manifold × K furnished with metric g g + ω 2 κ . The function ω is called a warping function. If u C 2 ( M ) , it holds

(1.6) Δ g u = Δ g u + N ω g ω g u + 1 ω 2 Δ κ u .

Assume that h is invariant with respect to K , i.e., h ( x , y ) = h ( x ) for any ( x , y ) × K . We look for solutions of (1.1), which are invariant with respect to K , i.e., ( u ( x , y ) , v ( x , y ) ) = ( u 1 ( x ) , v 1 ( x ) ) , then by (1.6), we know ( u , v ) solves (1.1) if and only if ( u 1 , v 1 ) solves

Δ g u 1 N ω g ω g u 1 + h u 1 = v 1 p , in ( , g ) , Δ g v 1 N ω g ω g v 1 + h v 1 = u 1 q , in ( , g ) , u 1 , v 1 > 0 , in ( , g ) ,

or equivalently,

(1.7) div g ( ω N g u 1 ) + ω N h u 1 = ω N v 1 p , in ( , g ) , div g ( ω N g v 1 ) + ω N h v 1 = ω N u 1 q , in ( , g ) , u 1 , v 1 > 0 , in ( , g ) .

It is clear that if ( u 1 , v 1 ) is a pair of solutions to (1.7), which blows up and concentrates at ξ 0 , then ( u ( x , y ) , v ( x , y ) ) = ( u 1 ( x ) , v 1 ( x ) ) is a pair of solutions to (1.1), which blows up and concentrates along the fiber { ξ 0 } × K , which is an m -dimensional submanifold of M . Moreover, we can see that { ξ 0 } × K is a minimal submanifold of M if ξ 0 is a critical point of ω .

Moreover, to guarantee that the associated energy functional is well defined, we further require that 1 p + 1 + 1 q + 1 ( p N , 0 * ) + . Therefore, we are led to study the following problem:

(1.8) d i v ( a ( x ) g u ) + a ( x ) h u = a ( x ) v p α ε , in ( , g ) , d i v ( a ( x ) g v ) + a ( x ) h v = a ( x ) u q β ε , in ( , g ) , u , v > 0 , in ( , g ) ,

where a C 2 ( ) , min x a ( x ) > 0 , h C 1 ( ) , α , β > 0 are the real numbers, ε > 0 is a small parameter, and ( p , q ) ( 1 , + ) × ( 1 , + ) is a pair of numbers satisfying

(1.9) 1 p + 1 + 1 q + 1 = N 2 N .

Without loss of generality, we assume that 1 < p N + 2 N 2 q .

To state our main result, we give the following definition.

Definition 1.1

For k 2 to be a positive integer, let ( u ε , v ε ) be a family of solutions of (1.8), we say that ( u ε , v ε ) blows up and concentrates at ξ 0 ¯ = ( ξ 1 0 , ξ 2 0 , , ξ k 0 ) k if there exist ( δ 1 ε , δ 2 ε , , δ k ε ) ( R + ) k and η ¯ ε = ( η 1 ε , η 2 ε , , η k ε ) ( R N ) k such that δ j ε 0 as ε 0 for j = 1 , 2 , , k , and

( u ε , v ε ) j = 1 k W δ j ε , ξ j 0 , η j ε , j = 1 k H δ j ε , ξ j 0 , η j ε 0 , as  ε 0 ,

where and ( W δ , ξ , η , H δ , ξ , η ) are defined in (2.1) and (2.4), respectively.

Let us recall ( U 1,0 ( z ) , V 1,0 ( z ) ) , which is the least energy solution of (1.4)–(1.5) in R N given by Wang [31] and Hulshof and Van der Vorst [20]. Let L 1 , L 2 , , L 5 be the positive numbers defined by

(1.10) L 1 = R N U 1,0 V 1,0 d z , L 2 = R N z 2 U 1,0 V 1,0 d z , L 3 = R N U 1,0 V 1,0 d z , and L 4 = R N z 2 V 1,0 p + 1 d z , L 5 = R N z 2 U 1,0 q + 1 d z , L 6 = R N V 1,0 p + 1 log V 1,0 d z , L 7 = R N U 1,0 q + 1 log U 1,0 d z .

Our main result states as follows.

Theorem 1.1

Let ( , g ) be a smooth compact Riemannian manifold of dimension N 8 , for any given integer k 2 , set ξ 0 ¯ = ( ξ 1 0 , ξ 2 0 , , ξ k 0 ) k , let ξ j 0 be a non-degenerate critical point of a ( x ) , and

(1.11) h ( ξ j 0 ) > 1 2 N L 3 L 2 L 4 p + 1 L 5 q + 1 Scal g ( ξ j 0 ) 3 Δ g a ( ξ j 0 ) a ( ξ j 0 ) ,

for any j = 1 , 2 , , k . Then, for any ε > 0 small enough, system (1.8) admits a family of solutions ( u ε , v ε ) , which blows up and concentrates at ξ ¯ 0 as ε 0 .

Remark 1.1

By Lemma 2.1, the following hold:

L 1 < + , provided N 3 , L 2 < + , provided N > 2 + 4 p , L 3 < + , if N 5 and 1 < p < N N 2 , N 6 and p = N N 2 , N > 2 + 4 p and N N 2 < p N + 2 N 2 , L 4 , L 5 < + , provided N > 2 + 3 p .

Moreover, in estimating the remainder term ε , t ¯ , ξ 0 ¯ , η ¯ (see Lemma 4.2 and coefficients A 2 , B 2 in [6, Lemma 4.2]), we need to prove that

(1.12) ε ( N 2 ) p 2 2 = O ( ε log ε p + 1 p )

and

(1.13) B ( 0 , r 0 δ j ) ( δ j N β ε q + 1 χ δ j q β ε χ δ j ) U 1,0 q q + 1 q d z = O ( ε log ε q + 1 q ) ,

where r 0 > 0 , ε > 0 is a small parameter, δ j ε , β > 0 , χ δ j ( z ) = χ ( δ j z ) , and χ is a smooth cutoff function satisfying 0 χ 1 in R N , χ ( z ) = 1 for z B ( 0 , r 0 2 ) , and χ ( z ) = 0 for z R N \ B ( 0 , r 0 ) . It is straightforward to verify that (1.12) holds if N > 2 + 4 p + 2 p 2 . Applying Lemma 2.1 and Taylor’s theorem, a direct computation yields

B ( 0 , r 0 δ j ) ( δ j N β ε q + 1 χ δ j q β ε χ δ j ) U 1,0 q q + 1 q d z = B ( 0 , r 0 2 δ j ) δ j N β ε q + 1 1 U 1,0 q q + 1 q d z + O r 0 2 δ j r 0 δ j r N 1 ( N 2 ) ( q + 1 ) d r , if  p > N N 2 , B ( 0 , r 0 2 δ j ) δ j N β ε q + 1 1 U 1,0 q q + 1 q d z + O r 0 2 δ j r 0 δ j r N 1 ( N 3 ) ( q + 1 ) d r , if  p = N N 2 , B ( 0 , r 0 2 δ j ) δ j N β ε q + 1 1 U 1,0 q q + 1 q d z + O r 0 2 δ j r 0 δ j r N 1 ( N p + N ) d r , if  p < N N 2 , = O ( ε log ε q + 1 q ) + O ε N 2 2 ( N 2 ) p 4 , if  p > N N 2 , O ( ε log ε q + 1 q ) + O ε N 2 N p N 2 N 4 , if  p = N N 2 , O ( ε log ε q + 1 q ) + O ( ε N p 2 ) , if  p < N N 2 ,

as ε 0 . Therefore, if N 8 and p > 1 , then all L 1 , L 2 , , L 5 are finite and (1.12)–(1.13) hold.

Remark 1.2

In this article, the choice p , q > 1 is strongly related to the method of the proof, since the reduction process can be carried out if the nonlinearities u q β ε and v p α ε in (1.8) have superlinear growth.

In particular, Theorem 1.1 applies to the case a = ω N , where ω is the warping function. For any j = 1 , 2 , , k , let Γ j { ξ j 0 } × K , and

Σ g ( Γ j ) 1 2 N L 3 L 2 L 4 p + 1 L 5 q + 1 Scal g ( ξ j 0 ) 3 N Δ g ω ( ξ j 0 ) ω ( ξ j 0 ) .

If ξ j 0 is a critical point of ω ( x ) , then Γ 1 × Γ 2 × × Γ k is a m -dimensional minimal submanifold of M k . Moreover, by (1.6) and Theorem 1.1, we immediately have the following result.

Corollary 1.2

For any given integer k 2 , set ξ 0 ¯ = ( ξ 1 0 , ξ 2 0 , , ξ k 0 ) k , let ξ j 0 be a non-degenerate critical point of ω ( x ) , if h is invariant with respect to K and h ( Γ j ) > Σ g ( Γ j ) , j = 1 , 2 , , k . Then, for any ε > 0 small enough, system (1) admits a family of solutions ( u ε , v ε ) , invariant with respect to K , which blows up and concentrates along Γ 1 × Γ 2 × × Γ k as ε 0 .

Remark 1.3

If u = v , p = q = N + 2 N 2 , α = β = 1 , and k = 1 , then Theorem 1.1 and Corollary 1.2 are exactly the conclusions obtained in [14, Theorems 1.2–1.3].

Remark 1.4

In contrast to the work [6], which addresses multiple blowing-up solutions for asymptotically critical Hamiltonian systems on Riemannian manifolds, this article focuses on establishing the existence of k -peak solutions concentrated along a minimal submanifold of M k .

The proof of our result relies on the well-known finite-dimensional Lyapunov-Schmidt reduction method, originally introduced in [2,12]. This article is structured as follows: In Section 2, we introduce the geometric framework and present some key preliminary results. The proof of Theorem 1.1 is provided in Section 3. In Section 4, we carry out the finite-dimensional reduction, and Section 5 is dedicated to analyzing the reduced problem. Throughout this article, C , C i ( i N + ) denote the positive constants that may vary from line to line.

2 Framework and preliminary results

We start with some properties of the least energy solution ( U 1,0 ( z ) , V 1,0 ( z ) ) of (1.4)–(1.5) in R N , which is given by Wang [31] and Hulshof and Van der Vorst [20].

Lemma 2.1

[20, Theorem 2] Assume that 1 < p N + 2 N 2 . If r + , there hold

V 1,0 ( r ) = O ( r 2 N )

and

U 1,0 ( r ) = O ( r 2 N ) , if  p > N N 2 , O ( r 2 N log r ) , if  p = N N 2 , O ( r 2 ( N 2 ) p ) , if  p < N N 2 .

Lemma 2.2

[22, Lemma 2.2] Assume that 1 < p N + 2 N 2 . If r + , there hold

V 1,0 ( r ) = O ( r 1 N )

and

U 1,0 ( r ) = O ( r 1 N ) , if  p > N N 2 , O ( r 1 N log r ) , if  p = N N 2 , O ( r 1 ( N 2 ) p ) , if  p < N N 2 .

Lemma 2.3

[13, Theorem 1] Set

( Ψ 1,0 1 , Φ 1,0 1 ) = z U 1,0 + N U 1,0 q + 1 , z V 1,0 + N V 1,0 p + 1

and

( Ψ 1,0 l , Φ 1,0 l ) = ( l U 1,0 , l V 1,0 ) , for  l = 1 , 2 , , N .

Then, the space of solutions for the linear system

Δ Ψ = p V 1,0 p 1 Φ , in R N , Δ Φ = q U 1,0 q 1 Ψ , in R N , ( Ψ , Φ ) W ˙ 2 , p + 1 p ( R N ) × W ˙ 2 , q + 1 q ( R N ) ,

is spanned by

{ ( Ψ 1,0 0 , Φ 1,0 0 ) , ( Ψ 1,0 1 , Φ 1,0 1 ) , , ( Ψ 1,0 N , Φ 1,0 N ) } .

Moreover, we have the following elementary inequality.

Lemma 2.4

[24, Lemma 2.1] For any a > 0 , b real, there holds

a + b β b β C ( β ) ( a β 1 b + b β ) , if  β 1 , C ( β ) min { a β 1 b , b β } , if  0 < β < 1 .

Now, we recall some definitions and results about the compact Riemannian manifold ( , g ) .

Definition 2.1

Let ( , g ) be a smooth compact Riemannian manifold. On the tangent bundle of , define the exponential map exp : T , which has the following properties:

  1. exp is of class C ;

  2. there exists a constant r 0 > 0 such that exp ξ B ( 0 , r 0 ) B g ( ξ , r 0 ) is a diffeomorphism for all ξ .

Fix such r 0 in this article with r 0 < min { i g , min j m { d g ( ξ j 0 , ξ m 0 ) } } , where i g denotes the injectivity radius of ( , g ) . For any 1 < s < + and u L s ( ) , we denote the L s -norm of u by

u s = u s d v g 1 s ,

where d v g = det g d z is the volume element on associated with the metric g . We introduce the Banach space

X p , q ( ) = W ˙ 1 , p * ( ) × W ˙ 1 , q * ( ) ,

equipped with the norm

(2.1) ( u , v ) = a ( x ) g u p * d v g 1 p * + a ( x ) g v q * d v g 1 q * ,

where

1 p * = p p + 1 1 N = 1 q + 1 + 1 N , 1 q * = q q + 1 1 N = 1 p + 1 + 1 N .

Denote by * the formal adjoint operator of the embedding : X q , p ( ) L p + 1 ( ) × L q + 1 ( ) . By the Calderón-Zygmund estimate, the operator * maps L p + 1 p ( ) × L q + 1 q ( ) to X p , q ( ) . Then, we rewrite problem (1.8) as

(2.2) ( u , v ) = * ( a ( x ) f ε ( v ) , a ( x ) g ε ( u ) ) ,

where f ε ( v ) v p α ε , g ε ( u ) u q β ε . Moreover, by the Sobolev embedding theorem, we have

(2.3) * ( a ( x ) f ε ( v ) , a ( x ) g ε ( u ) ) C a ( x ) f ε ( v ) p + 1 p + C a ( x ) g ε ( u ) q + 1 q .

Let χ be a smooth cutoff function such that 0 χ 1 in R N , χ ( z ) = 1 if z B ( 0 , r 0 2 ) , and χ ( z ) = 0 if z R N \ B ( 0 , r 0 ) . For any ξ , δ > 0 , and η R N , we define the following functions on :

(2.4) ( W δ , ξ , η ( x ) , H δ , ξ , η ( x ) ) ( χ ( d g ( x , ξ ) ) δ N q + 1 U 1,0 ( δ 1 exp ξ 1 ( x ) η ) , χ ( d g ( x , ξ ) ) δ N p + 1 V 1,0 ( δ 1 exp ξ 1 ( x ) η ) )

and

( Ψ δ , ξ , η i ( x ) , Φ δ , ξ , η i ( x ) ) ( χ ( d g ( x , ξ ) ) δ N q + 1 Ψ 1,0 i ( δ 1 exp ξ 1 ( x ) η ) , χ ( d g ( x , ξ ) ) δ N p + 1 Φ 1,0 i ( δ 1 exp ξ 1 ( x ) η ) ) ,

for i = 0 , 1 , , N , where ( Ψ 1,0 i , Φ 1,0 i ) is given in Lemma 2.3.

For any ε > 0 small enough, and t ¯ = ( t 1 , t 2 , , t k ) ( R + ) k , we set

(2.5) δ ¯ = ( δ 1 , δ 2 , , δ k ) ( R + ) k , δ j = ε t j , ϱ < t j < ϱ 1 , η ¯ = ( η 1 , η 2 , , η k ) ( R N ) k

for fixed small ϱ > 0 . Let Y δ ¯ , ξ 0 ¯ , η ¯ and Z δ ¯ , ξ 0 ¯ , η ¯ be two subspaces of X p , q ( ) given as

Y δ ¯ , ξ 0 ¯ , η ¯ = span { ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) : i = 0 , 1 , , N and j = 1 , 2 , , k }

and

Z δ ¯ , ξ 0 ¯ , η ¯ = { ( Ψ , Φ ) X p , q ( ) , ( Ψ , Φ ) , ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) h = 0 for  i = 0 , 1 , , N , j = 1 , 2 , , k } ,

where

( u , v ) , ( φ , ψ ) h = a ( x ) ( g u g ψ + g v g φ ) d v g + a ( x ) ( h u ψ + h v φ ) d v g ,

for any ( u , v ) , ( φ , ψ ) X p , q ( ) .

Lemma 2.5

There exists ε 0 > 0 such that for any ε ( 0 , ε 0 ) , X p , q ( ) = Y δ ¯ , ξ 0 ¯ , η ¯ Z δ ¯ , ξ 0 ¯ , η ¯ .

Proof

We shall prove that for any ( Ψ , Φ ) X p , q ( ) , there exist unique pair ( Ψ 0 , Φ 0 ) Z δ ¯ , ξ 0 ¯ , η ¯ and coefficients c 01 , c 02 , , c 0 k , c 11 , c 12 , , c 1 k , , c N 1 , c N 2 , , c N k such that

(2.6) ( Ψ , Φ ) = ( Ψ 0 , Φ 0 ) + l = 0 N m = 1 k c l m ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) .

The requirement that ( Ψ 0 , Φ 0 ) Z δ ¯ , ξ 0 ¯ , η ¯ is equivalent to demanding

(2.7) ( a ( x ) g Ψ g Φ δ j , ξ j 0 , η j i + a ( x ) g Φ g Ψ δ j , ξ j 0 , η j i + a ( x ) h Ψ Φ δ j , ξ j 0 , η j i + a ( x ) h Φ Ψ δ j , ξ j 0 , η j i ) d v g = l = 0 N m = 1 k c l m ( a ( x ) g Ψ δ m , ξ m 0 , η m l g Φ δ j , ξ j 0 , η j i + a ( x ) g Φ δ m , ξ m 0 , η m l g Ψ δ j , ξ j 0 , η j i + a ( x ) h Ψ δ m , ξ m 0 , η m l Φ δ j , ξ j 0 , η j i + a ( x ) h Φ δ m , ξ m 0 , η m l Ψ δ j , ξ j 0 , η j i ) d v g ,

for any i = 0 , 1 , , N and j = 1 , 2 , , k .

We estimate the integral on the right-hand side of (2.7). By standard properties of the exponential map, there exists C > 0 such that for any ξ , δ > 0 , z B ( 0 , r 0 δ ) , η R N and i , j , k N + , there hold

g δ , ξ , η i j ( z ) Eucl i j C δ 2 z + η 2 , and g δ , ξ , η i j ( z ) ( Γ δ , ξ , η ) i j k ( z ) C δ 2 z + η ,

where g δ , ξ , η ( z ) = exp ξ * g ( δ z + δ η ) and ( Γ δ , ξ , η ) i j k stand for the Christoffel symbols of the metric g δ , ξ , η . Taking into account that there holds

Δ g δ , ξ , η = g δ , ξ , η i j 2 z i z j ( Γ δ , ξ , η ) i j k z k ,

by Lemma 2.3 and d g ( ξ j 0 , ξ m 0 ) > r 0 for any j m , we have

(2.8) a ( x ) g Ψ δ m , ξ m 0 , η m l g Φ δ j , ξ j 0 , η j i d v g = δ j m a ( x ) g Ψ δ j , ξ j 0 , η j l g Φ δ j , ξ j 0 , η j i d v g = δ j m B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j g δ j , ξ j 0 , η j ( χ δ j , η j Ψ 1,0 l ) g δ j , ξ j 0 , η m ( χ δ j , η j Φ 1,0 i ) d z = p δ j m B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j χ δ j , η j 2 V 1,0 p 1 Φ 1,0 l Φ 1,0 i d z + O ( δ j 2 ) = p δ i l δ j m B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j χ δ j , η j 2 V 1,0 p 1 ( Φ 1,0 i ) 2 d z + O ( δ j 2 )

and

(2.9) a ( x ) h Ψ δ m , ξ m 0 , η m l Φ δ j , ξ j 0 , η j i d v g = δ j m a ( x ) h Ψ δ j , ξ j 0 , η j l Φ δ j , ξ j 0 , η j i d v g = δ j m δ j 2 B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j h δ j , ξ j 0 , η j χ δ j , η j 2 Ψ 1,0 l Φ 1,0 i d z = δ j m δ j 2 B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j h δ j , ξ j 0 , η j χ δ j , η j 2 Δ Φ 1,0 l q U 1,0 q 1 Φ 1,0 i d z + o ( δ j 2 ) = δ i l δ j m δ j 2 B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j h δ j , ξ j 0 , η j χ δ j , η j 2 ( Φ 1,0 i ) 2 q U 1,0 q 1 d z + o ( δ j 2 ) ,

where χ δ j , η j ( z ) = χ ( δ j z + η j ) , a δ j , ξ j 0 , η j ( z ) = a ( exp ξ j 0 ( δ j z + δ j η j ) ) and h δ j , ξ j 0 , η j ( z ) = h ( exp ξ j 0 ( δ j z + δ j η j ) ) . Similarly, we have

(2.10) a ( x ) g Φ δ m , ξ m 0 , η m l g Ψ δ j , ξ j 0 , η j i d v g = q δ i l δ j m B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j χ δ j , η j 2 U 1,0 q 1 ( Ψ 1,0 i ) 2 d z + O ( δ j 2 )

and

(2.11) a ( x ) h Φ δ m , ξ m 0 , η m l Ψ δ j , ξ j 0 , η j i d v g = δ i l δ j m δ j 2 B ( 0 , r 0 δ j ) a δ j , ξ j 0 , η j h δ j , ξ j 0 , η j χ δ j , η j 2 ( Ψ 1,0 i ) 2 p V 1,0 p 1 d z + o ( δ j 2 ) .

By plugging (2.8)–(2.11) into (2.7), we can see that the coefficients c l m are uniquely determined for l = 0 , 1 , , N and m = 1 , 2 , , k . By virtue of (2.6), so is ( Ψ 0 , Φ 0 ) .

On the other hand, Y δ ¯ , ξ 0 ¯ , η ¯ and Z δ ¯ , ξ 0 ¯ , η ¯ are clearly closed subspaces of X p , q ( ) , Therefore, they are topological complements of each other.□

3 Scheme of the proof of Theorem 1.1

We look for solutions of system (1.8), or equivalently of (2.2), of the form

(3.1) ( u ε , v ε ) = ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ,

with

W δ ¯ , ξ 0 ¯ , η ¯ = j = 0 k W δ j , ξ j 0 , η j , δ ¯ , ξ 0 ¯ , η ¯ = j = 0 k H δ j , ξ j 0 , η j ,

where δ ¯ is as in (2.5), ( W δ j , ξ j 0 , η j , H δ j , ξ j 0 , η j ) is as in (2.4), and ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) Z δ ¯ , ξ 0 ¯ , η ¯ . By Lemma 2.5, we know X p , q ( ) = Y δ ¯ , ξ 0 ¯ , η ¯ Z δ ¯ , ξ 0 ¯ , η ¯ . Then, we define the projections Π δ ¯ , ξ 0 ¯ , η ¯ and Π δ ¯ , ξ 0 ¯ , η ¯ of the Sobolev space X p , q ( ) onto Y δ ¯ , ξ 0 ¯ , η ¯ and Z δ ¯ , ξ 0 ¯ , η ¯ , respectively. Therefore, we have to solve the couples of equations

(3.2) Π δ ¯ , ξ 0 ¯ , η ¯ [ ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) * ( a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) , a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) ) ] = 0

and

(3.3) Π δ ¯ , ξ 0 ¯ , η ¯ [ ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) * ( a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) , a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) ) ] = 0 .

The first step in the proof consists in solving equation (3.3). This requires Proposition 3.1, whose proof is postponed to Section 4.

Proposition 3.1

Under the assumptions of Theorem 1.1, for any ε > 0 small enough, if δ ¯ is as in (2.5), then equation (3.3) admits a unique solution ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) in Z δ ¯ , ξ 0 ¯ , η ¯ , which is continuously differentiable with respect to t ¯ and η ¯ , such that

( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) C ε log ε .

We now introduce the energy functional J ε defined on X p , q ( ) by

J ε ( u , v ) = a ( x ) g u g v d v g + a ( x ) h u v d v g 1 p + 1 α ε a ( x ) v p + 1 α ε d v g 1 q + 1 β ε a ( x ) u q + 1 β ε d v g .

It is clear that the critical points of J ε are the solutions of system (1.8). Moreover,

J ε ( u , v ) ( φ , ψ ) = a ( x ) ( g u g ψ + g v g φ ) d v g + a ( x ) ( h u ψ + h v φ ) d v g a ( x ) u q β ε φ d v g a ( x ) v p α ε ψ d v g ,

for any ( u , v ) , ( φ , ψ ) X p , q ( ) . We also define the functional J ˜ ε : ( R + ) k × ( R N ) k R

(3.4) J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ,

where ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) is as in (3.1), ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) is given in Proposition 3.1.

Definition 3.1

For a given C 1 -function φ ε , we say that the estimate φ ε = o ( ε ) is C 1 -uniform if there hold φ ε = o ( ε ) and φ ε = o ( ε ) as ε 0 .

We solve equation (3.2) in Proposition 3.2, whose proof is postponed to Section 5.

Proposition 3.2

(i) Under the assumptions of Theorem 1.1, for any ε > 0 small enough, if δ ¯ is as in (2.5), and ( t ¯ , η ¯ ) is a critical point of the functional J ˜ ε , then ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) is a solution of system (1.8), or equivalently of (2.2).

(ii) Under the assumptions of Theorem 1.1, there holds

J ˜ ε ( t ¯ , η ¯ ) = j = 1 k a ( ξ j 0 ) 2 N L 1 + c 1 ε c 2 ε log ε + Ψ ( t j , η j ) ε + o ( ε ) ,

as ε 0 , C 1 -uniformly with respect to η ¯ in ( R N ) k and to t ¯ in compact subsets of ( R + ) k , where

(3.5) c 1 = L 6 α p + 1 + L 7 β q + 1 α ( p + 1 ) 2 + β ( q + 1 ) 2 L 1 , c 2 = N L 1 2 α ( p + 1 ) 2 + β ( q + 1 ) 2 ,

and

(3.6) Ψ ( t j , η j ) = L 3 h ( ξ j 0 ) 1 2 N L 2 L 4 p + 1 L 5 q + 1 Scal g ( ξ j 0 ) 3 Δ g a ( ξ j 0 ) a ( ξ j 0 ) + L 1 D g 2 a ( ξ j 0 ) [ η j , η j ] N a ( ξ j 0 ) t j c 2 log t j ,

with L i being the positive constants given in (1.10), i = 1 , 2 , , 7 .

We now prove Theorem 1.1 using Propositions 3.1 and 3.2.

Proof of Theorem 1.1

Define J ˜ : ( R + ) k × ( R N ) k R by

J ˜ ( t ¯ , η ¯ ) j = 1 k Φ ( t j , η j ) , with  Φ ( t j , η j ) = a ( ξ j 0 ) Ψ ( t j , η j ) L 3 ,

where L 3 > 0 is given in (1.10). Since ξ j 0 is a non-degenerate critical point of a ( x ) with (1.11) holds, set

Θ ( ξ j 0 ) h ( ξ j 0 ) 1 2 N L 3 L 2 L 4 p + 1 L 5 q + 1 Scal g ( ξ j 0 ) 3 Δ g a ( ξ j 0 ) a ( ξ j 0 ) and t j 0 c 2 a ( ξ j 0 ) Θ ( ξ j 0 ) ,

then t j 0 > 0 and ( t j 0 , 0 ) is a non-degenerate critical point of Φ ( t j , η j ) , j = 1 , 2 , , k . Hence, ( t 0 ¯ , 0 ) is a non-degenerate critical point of J ˜ ( t ¯ , η ¯ ) . Using Proposition 3.2, we have

t ¯ ( ε 1 L 3 1 J ˜ ε J ˜ ) + η ¯ ( ε 1 L 3 1 J ˜ ε J ˜ ) 0 ,

as ε 0 , uniformly with respect to η ¯ in ( R N ) k and to t ¯ in compact subsets of ( R + ) k . It follows that there exists a family of critical points ( t ε ¯ , η ε ¯ ) of J ˜ ε converging to ( t 0 ¯ , 0 ) as ε 0 . Using Proposition 3.2 again, we can see that the function ( u ε , v ε ) = ( W δ ε ¯ , ξ 0 ¯ , η ε ¯ + Ψ ε , t ε ¯ , ξ 0 ¯ , η ε ¯ , δ ε ¯ , ξ 0 ¯ , η ε ¯ + Φ ε , t ε ¯ , ξ 0 ¯ , η ε ¯ ) is a pair of solutions of system (1.8) for any ε > 0 small enough, where δ ε ¯ is as in (2.5). Moreover, ( u ε , v ε ) blows up and concentrates at ξ 0 ¯ at ε 0 . This completes the proof.□

4 Proof of Proposition 3.1

This section is devoted to the proof of Proposition 3.1. For any ε > 0 small enough, t ¯ ( R + ) k , and η ¯ ( R N ) k , if δ ¯ is as in (2.5), we introduce the map ε , t ¯ , ξ 0 ¯ , η ¯ : Z δ ¯ , ξ 0 ¯ , η ¯ Z δ ¯ , ξ 0 ¯ , η ¯ defined by

(4.1) ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) = Π δ ¯ , ξ 0 ¯ , η ¯ [ ( Ψ , Φ ) * ( a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ , a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ) ] .

it is easy to check that ε , t ¯ , ξ 0 ¯ , η ¯ is well defined in Z δ ¯ , ξ 0 ¯ , η ¯ . Next, we prove the invertibility of this map.

Lemma 4.1

Under the assumptions of Theorem 1.1, for any ε > 0 small enough, if δ ¯ is as in (2.5), and ( Ψ , Φ ) Z δ ¯ , ξ 0 ¯ , η ¯ , then there holds

ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) C ( Ψ , Φ ) ,

where ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) is as in (4.1).

Proof

Assume by contradiction that there exist a sequence ε n 0 as n + , t n ¯ = ( t 1 n , t 2 n , , t k n ) ( R + ) k , η n ¯ = ( η 1 n , η 2 n , , η k n ) ( R N ) k , and a sequence of functions ( Ψ n , Φ n ) Z δ n ¯ , ξ n 0 ¯ , η n ¯ such that

( Ψ n , Φ n ) = 1 , ε n , t n ¯ , ξ n 0 ¯ , η n ¯ ( Ψ n , Φ n ) 0 , as  n + .

Step 1: For any n N + and j = 1 , 2 , , k , let

( Ψ ˜ n ( z ) , Φ ˜ n ( z ) ) = ( χ ( δ j n z + η j n ) δ j n N q + 1 Ψ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) , χ ( δ j n z + η j n ) δ j n N p + 1 Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) ) ,

where χ is the cutoff function as in (2.4). A direct computation shows

Ψ ˜ n L p * ( R N ) p * B ( 0 , r 0 δ j n ) δ j n N q + 1 Ψ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) p * d z = B ( 0 , r 0 ) δ j n N δ j n 1 + N q + 1 Ψ n ( exp ξ j n ( z + η j n ) ) p * d z = B g ( ξ j n , r 0 ) g Ψ n p * d v g = g Ψ n p * d v g C

and

Φ ˜ n L q * ( R N ) q * B ( 0 , r 0 δ j n ) δ j n N p + 1 Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) q * d z = B ( 0 , r 0 ) δ j n N δ j n 1 + N p + 1 Φ n ( exp ξ j n 0 ( z + η j n ) ) q * d z = B g ( ξ j n , r 0 ) g Φ n q * d v g = g Φ n q * d v g C .

Hence, ( Ψ ˜ n , Φ ˜ n ) is bounded in W ˙ 1 , p * ( R N ) × W ˙ 1 , q * ( R N ) . Up to a subsequence, there exists ( Ψ ˜ , Φ ˜ ) W ˙ 1 , p * ( R N ) × W ˙ 1 , q * ( R N ) such that ( Ψ ˜ n , Φ ˜ n ) ( Ψ ˜ , Φ ˜ ) in W ˙ 1 , p * ( R N ) × W ˙ 1 , q * ( R N ) , ( Ψ ˜ n , Φ ˜ n ) ( Ψ ˜ , Φ ˜ ) in L l o c s ( R N ) × L l o c t ( R N ) for any ( s , t ) [ 1 , q + 1 ] × [ 1 , p + 1 ] , and ( Ψ ˜ n , Φ ˜ n ) ( Ψ ˜ , Φ ˜ ) almost everywhere in R N . For convenience, we denote ( P n , K n ) = ε n , t n ¯ , ξ n 0 ¯ , η n ¯ ( Ψ n , Φ n ) . Furthermore, by ( P n , K n ) Z δ n ¯ , ξ n 0 ¯ , η n ¯ , there exist c 1 n 0 , c 2 n 0 , , c k n 0 , c 1 n 1 , c 2 n 1 , , c k n 1 , , c 1 n N , c 2 n N , , c k n N such that

(4.2) ( Ψ n , Φ n ) * ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n , a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n ) = ( P n , K n ) + l = 0 N m = 1 k c m n l ( Ψ δ m n , ξ m n 0 , η m n l , Φ δ m n , ξ m n 0 , η m n l ) ,

which also reads

(4.3) Ψ n * ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n ) P n = l = 0 N m = 1 k c m n l Ψ δ m n , ξ m n 0 , η m n l , in  R N , Φ n * ( a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n ) K n = l = 0 N m = 1 k c m n l Φ δ m n , ξ m n 0 , η m n l , in  R N .

Using ( Ψ n , Φ n ) Z δ n ¯ , ξ n 0 ¯ , η n ¯ again, by an easy change of variable, for i = 0 , 1 , , N and j = 1 , 2 , , k , we have

0 = a ( x ) [ g Ψ n g Φ δ j n , ξ j n 0 , η j n i + g Φ n g Ψ δ j n , ξ j n 0 , η j n i + h Ψ n Φ δ j n , ξ j n 0 , η j n i + h Φ n Ψ δ j n , ξ j n 0 , η j n i ] d v g = B ( 0 , r 0 δ j n ) δ j n N 2 N p + 1 a n g n Ψ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) g n ( χ n Φ 1,0 i ) + δ j n N 2 N q + 1 a n g n Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) g n ( χ n Ψ 1,0 i ) + δ j n N N p + 1 a n h n Ψ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) χ n Φ 1,0 i + δ j n N N q + 1 a n h n Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) χ n Ψ 1,0 i d z = B ( 0 , r 0 δ j n ) [ a n g n Ψ ˜ n g n ( χ n Φ 1,0 i ) + a n g n Φ ˜ n g n ( χ n Ψ 1,0 i ) + δ j n 2 a n h n Ψ ˜ n Φ 1,0 i + δ j n 2 a n h n Φ ˜ n Ψ 1,0 i ] d z ,

where g n ( z ) = exp ξ j n 0 * g ( δ j n z + δ j n η j n ) , χ n ( z ) = χ ( δ j n z + η j n ) , a n ( z ) = a ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) , and h n ( z ) = h ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) . By Lemma 2.3, passing to the limit for the aforementioned equality, we obtain

(4.4) lim n + R N a n ( p V 1,0 p 1 Φ 1,0 i Φ ˜ + q U 1,0 q 1 Ψ 1,0 i Ψ ˜ ) d z = lim n + R N a n ( Ψ ˜ Φ 1,0 i + Φ ˜ Ψ 1,0 i ) d z = 0 .

Step 2: For any l = 0 , 1 , , N and m = 1 , 2 , , k , c m n l 0 as n . For any n N + , since ( Ψ n , Φ n ) and ( P n , K n ) belong to Z δ n ¯ , ξ n 0 ¯ , η n ¯ , multiplying (4.2) by ( Ψ δ j n , ξ j n 0 , η j n i , Φ δ j n , ξ j n 0 , η j n i ) , 0 i N , 1 j k , using (2.8)–(2.11), we have

(4.5) ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n Φ δ j n , ξ j n 0 , η j n i + a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n Ψ δ j n , ξ j n 0 , η j n i ) d v g = l = 0 N m = 1 k c m n l δ i l δ j m B ( 0 , r 0 δ j n ) ( p a n χ n 2 V 1,0 p 1 ( Φ 1,0 i ) 2 + q a n χ n 2 U 1,0 q 1 ( Ψ 1,0 i ) 2 ) d z + O ( δ j n 2 ) .

Moreover, by (4.4), we have

(4.6) ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n Φ δ j n , ξ j n 0 , η j n i + a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n Ψ δ j n , ξ j n 0 , η j n i ) d v g = ( ( p α ε n ) a ( x ) δ n ¯ , ξ n 0 , η n ¯ ¯ p 1 α ε n Φ n Φ δ j n , ξ j n 0 , η j n i + ( q β ε n ) a ( x ) W δ n ¯ , ξ n 0 , η n ¯ ¯ q 1 β ε n Ψ n Ψ δ j n , ξ j n 0 , η j n i ) d v g = m = 1 k ( ( p α ε n ) a ( x ) H δ m n , ξ m n 0 , η m n p 1 α ε n Φ n Φ δ j n , ξ j n i + ( q β ε n ) a ( x ) W δ m n , ξ m n 0 , η m n q 1 β ε n Ψ n Ψ δ j n , ξ j n , η j n i ) d v g = δ j m B ( 0 , r 0 δ j n ) ( p α ε n ) δ j n N N ( p α ε n ) p + 1 N p + 1 a n ( χ n V 1,0 ) p 1 α ε n χ n δ j n N p + 1 Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) Φ 1,0 i + ( q β ε n ) δ j n N N ( q β ε n ) q + 1 N q + 1 a n ( χ n U 1,0 ) q 1 β ε n χ n δ j n N q + 1 Ψ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) Ψ 1,0 i d z = δ j m B ( 0 , r 0 δ j n ) ( p α ε n ) δ j n N N ( p α ε n ) p + 1 N p + 1 a n ( χ n V 1,0 ) p 1 α ε n Φ ˜ n ( z ) Φ 1,0 i + ( q β ε n ) δ j n N N ( q β ε n ) q + 1 N q + 1 a n ( χ n U 1,0 ) q 1 β ε n Ψ ˜ n ( z ) Ψ 1,0 i d z δ j m R N a n ( p V 1,0 p 1 Φ 1,0 i Φ ˜ + q U 1,0 q 1 Ψ 1,0 i Ψ ˜ ) d z = 0 , as  n + .

It follows from (4.5) and (4.6) that for any l = 0 , 1 , , N and m = 1 , 2 , , k , c m n l 0 as n .

Step 3: ( Ψ ˜ , Φ ˜ ) = ( 0 , 0 ) . For any ( φ , ψ ) C 0 ( R N ) × C 0 ( R N ) and j = 1 , 2 , , k , by the dominated convergence theorem, we obtain

( p α ε ) { z R N : φ ( z ) 0 } a n ( χ n δ j n N p + 1 V 1,0 ) p 1 α ε Φ n ( exp ξ j n ( δ j n z + δ j n η j n ) ) φ d z p { z R N : φ ( z ) 0 } a n V 1,0 p 1 Φ ˜ φ d z

and

( q β ε ) { z R N : ψ ( z ) 0 } a n ( χ n δ j n N q + 1 U 1,0 ) q 1 β ε Ψ n ( exp ξ j n ( δ j n z + δ j n η j n ) ) ψ d z q { z R N : ψ ( z ) 0 } a n U 1,0 q 1 Ψ ˜ ψ d z

as n + . Using (4.3), ( P n , K n ) 0 , c m n l 0 as n for any l = 0 , 1 , , N and m = 1 , 2 , , k , we deduce that ( Ψ ˜ , Φ ˜ ) satisfies

Δ Ψ ˜ = p V 1,0 p 1 Φ ˜ , in  R N , Δ Φ ˜ = q U 1,0 q 1 Ψ ˜ , in  R N .

This together with (4.4) and Lemma 2.3 yields that ( Ψ ˜ , Φ ˜ ) = ( 0 , 0 ) .

Step 4: * ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n , a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n ) 0 as n . By (2.3), we know

* ( a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n , a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n ) C a ( x ) f ε n ( δ n ¯ , ξ n 0 ¯ , η n ¯ ) Φ n p + 1 p + C a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n q + 1 q .

For any fixed R > 0 and j = 1 , 2 , , k , by the Hölder inequality, Φ ˜ n 0 in L l o c p + 1 1 + α ε n ( R N ) , and Ψ ˜ n 0 in L l o c q + 1 1 + β ε n ( R N ) , we have

a ( x ) f ε n ( δ n ¯ , ξ n ¯ ) Φ n p + 1 p p + 1 p = ( p α ε n ) a ( x ) δ n ¯ , ξ n 0 ¯ , η n ¯ p 1 α ε n Φ n p + 1 p d v g = j = 1 k δ j n N α ε n p B ( 0 , r 0 δ j n ) ( p α ε n ) a n χ n p 2 α ε V 1,0 p 1 α ε n χ n δ j n N p + 1 Φ n ( exp ξ j n 0 ( δ j n z + δ j n η j n ) ) p + 1 p d z = j = 1 k δ j n N α ε n p B ( 0 , r 0 δ j n ) ( p α ε n ) a n χ n p 2 α ε V 1,0 p 1 α ε n Φ ˜ n ( z ) p + 1 p d z C B ( 0 , r 0 δ j n ) V 1,0 p + 1 d z p 1 α ε n p B ( 0 , r 0 δ j n ) Φ ˜ n ( z ) p + 1 1 + α ε n d z 1 + α ε n p C B ( 0 , R ) Φ ˜ n ( z ) p + 1 1 + α ε n d z 1 + α ε n p + C ε n [ ( N 2 ) p 2 ] ( p 1 α ε n ) 2 p 0 , as  n + ,

and

a ( x ) g ε n ( W δ n ¯ , ξ n 0 ¯ , η n ¯ ) Ψ n q + 1 q q + 1 q = ( q β ε n ) a ( x ) W δ n ¯ , ξ n 0 ¯ , η n ¯ q 1 β ε n Ψ n q + 1 q d v g = j = 1 k δ j n N β ε n q B ( 0 , r 0 δ j n ) ( q β ε n ) a n χ n q 2 β ε U 1,0 q 1 β ε n χ n δ j n N q + 1 Ψ n ( exp ξ j n ( δ j n z + δ j n η j n ) ) q + 1 q d z = j = 1 k δ j n N β ε n q B ( 0 , r 0 δ j n ) ( q β ε n ) a n χ n q 2 β ε U 1,0 q 1 β ε n Ψ ˜ n ( z ) q + 1 q d z C B ( 0 , r 0 δ j n ) U 1,0 q + 1 d z q 1 β ε n q B ( 0 , r 0 δ j n ) Ψ ˜ n ( z ) q + 1 1 + β ε n d z 1 + β ε n q C B ( 0 , R ) Ψ ˜ n ( z ) q + 1 1 + β ε n d z 1 + β ε n q + C ε n [ ( N 2 ) q 2 ] ( q 1 β ε n ) 2 q 0 , if  p > N N 2 , C B ( 0 , R ) Ψ ˜ n ( z ) q + 1 1 + β ε n d z 1 + β ε n q + C ε n [ ( N 3 ) q 3 ] ( q 1 β ε n ) 2 q 0 , if  p = N N 2 , C B ( 0 , R ) Ψ ˜ n ( z ) q + 1 1 + β ε n d z 1 + β ε n q + C ε n N p ( q 1 β ε n ) 2 q 0 , if  p < N N 2 . 0 , as  n + ,

From the aforementioned arguments, we obtain ( Ψ n , Φ n ) 0 as n + , which is an absurd. Thus, we complete the proof.□

For any ε > 0 small enough, t ¯ ( R + ) k , and η ¯ ( R N ) k , if δ ¯ is as in (2.5), then equation (3.3) is equivalent to

ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) = N ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) + ε , t ¯ , ξ 0 ¯ , η ¯ ,

where

(4.7) N ε , t ¯ , ξ 0 ¯ , η ¯ ( Ψ , Φ ) = Π δ ¯ , ξ 0 ¯ , η ¯ * { a ( x ) [ f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ] , a ( x ) [ g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ] } ,

and

(4.8) ε , t ¯ , ξ 0 ¯ , η ¯ = Π δ ¯ , ξ 0 ¯ , η ¯ [ * ( a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) , a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) ) ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ] .

In the following lemma, we estimate the reminder term ε , t ¯ , ξ 0 ¯ , η ¯ .

Lemma 4.2

Under the assumptions of Theorem 1.1, for any ε > 0 small enough, if δ ¯ is as in (2.5), then there holds

ε , t ¯ , ξ 0 ¯ , η ¯ C ε log ε ,

where ε , t ¯ , ξ 0 ¯ , η ¯ is as in (4.8).

Proof

Since d g ( ξ j 0 , ξ m 0 ) > r 0 for any j m , by (2.3) and the definition of the function χ ( z ) , there exists C > 0 such that

ε , t ¯ , ξ 0 ¯ , η ¯ C a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) + a ( x ) Δ g W δ ¯ , ξ 0 ¯ , η ¯ + g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ a ( x ) h W δ ¯ , ξ 0 ¯ , η ¯ p + 1 p + C a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) + a ( x ) Δ g δ ¯ , ξ 0 ¯ , η ¯ + g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ a ( x ) h δ ¯ , ξ 0 ¯ , η ¯ q + 1 q C f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) + Δ g W δ ¯ , ξ 0 ¯ , η ¯ h W δ ¯ , ξ 0 ¯ , η ¯ p + 1 p + g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ p + 1 p + C g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) + Δ g δ ¯ , ξ 0 ¯ , η ¯ h δ ¯ , ξ 0 ¯ , η ¯ q + 1 q + g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ q + 1 q = C j = 1 k f ε ( H δ j , ξ j 0 , η j ) + Δ g W δ j , ξ j 0 , η j h W δ j , ξ j 0 , η j p + 1 p I j + C j = 1 k g a ( x ) g W δ j , ξ j 0 , η j p + 1 p I I j + C j = 1 k g ε ( W δ j , ξ j 0 , η j ) + Δ g H δ j , ξ j 0 , η j h H δ j , ξ j 0 , η j q + 1 q I I I j + C j = 1 k g a ( x ) g H δ j , ξ j 0 , η j q + 1 q I V j .

Similar to [6, Lemma 4.2], we can prove that I j = I I I j = O ( ε log ε ) . It remains to estimate I I j and I V j , j = 1 , 2 , , k .

For any fixed R > 0 and j = 1 , 2 , , k , since ξ j 0 is a non-degenerate critical point of a ( x ) , by Lemmas 2.1 and 2.2, we have

(4.9) I I j p + 1 p C max 1 l N B ( 0 , r 0 ) y p + 1 p y l ( χ ( y ) δ j N q + 1 U 1,0 ( δ j 1 y η j ) ) p + 1 p d z C B ( 0 , r 0 δ j ) B ( 0 , r 0 2 δ j ) δ j z p + 1 p δ j N q + 1 U 1,0 ( z η j ) p + 1 p δ j N d z + C max 1 l N B ( 0 , r 0 δ j ) δ j z p + 1 p δ j N q + 1 1 y l U 1,0 ( z η j ) p + 1 p δ j N d z C δ j N + p + 1 p N ( p + 1 ) p ( q + 1 ) B ( 0 , r 0 δ j ) B ( 0 , r 0 2 δ j ) z p + 1 p U 1,0 ( z η j ) p + 1 p d z + C δ j N N ( p + 1 ) p ( q + 1 ) max 1 l N B ( 0 , R ) z p + 1 p y l U 1,0 ( z η j ) p + 1 p d z + C δ j N N ( p + 1 ) p ( q + 1 ) max 1 l N B ( 0 , r 0 δ j ) \ B ( 0 , R ) z p + 1 p y l U 1,0 ( z η j ) p + 1 p d z = O ( δ j N p ) + O ( δ j N N ( p + 1 ) p ( q + 1 ) ) , if  p > N N 2 , O ( δ j N p 1 p ) + O ( δ j N N ( p + 1 ) p ( q + 1 ) ) , if  p = N N 2 , O ( δ j N ( p + 1 ) q + 1 ) + O ( δ j N N ( p + 1 ) p ( q + 1 ) ) , if  p < N N 2 , = O ( δ j 2 ( p + 1 ) p ) = O ( ε p + 1 p ) .

Similarly, it holds

(4.10) I V j q + 1 q C δ j N + q + 1 q N ( q + 1 ) q ( p + 1 ) B ( 0 , r 0 δ j ) B ( 0 , r 0 2 δ j ) z q + 1 q V 1,0 ( z η j ) q + 1 q d z + C δ j N N ( q + 1 ) q ( p + 1 ) max 1 l N B ( 0 , R ) z q + 1 q y l V 1,0 ( z η j ) q + 1 q d z + C δ j N N ( q + 1 ) q ( p + 1 ) max 1 l N B ( 0 , r 0 δ j ) \ B ( 0 , R ) z q + 1 q y l V 1,0 ( z η j ) q + 1 q d z = O ( δ j N q ) + O δ j N N ( q + 1 ) q ( p + 1 ) = O ( ε q + 1 q ) .

This completes the proof.□

Proof of Proposition 3.1

Using Lemmas 4.1 and 4.2, a similar discussion of [6, Proposition 3.1] completes the proof.□

5 Proof of Proposition 3.2

This section is devoted to the proof of Proposition 3.2. As the first step, we have

Lemma 5.1

Under the assumptions of Theorem 1.1, for any ε > 0 small enough, if δ ¯ is as in (2.5), and ( t ¯ , η ¯ ) is a critical point of the functional J ˜ ε , then ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) is a solution of system (1.8), or equivalently of (2.2).

Proof

Let ( t ¯ , η ¯ ) be a critical point of J ˜ ε , where t ¯ = ( t 1 , t 2 , , t k ) ( R + ) k and η ¯ = ( η 1 , η 2 , , η k ) ( R N ) k . Since ( t ¯ , η ¯ ) is a critical point of J ˜ ε , for any l = 1 , 2 , , N and m = 1 , 2 , , k , there hold

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( t m W δ ¯ , ξ 0 ¯ , η ¯ + t m Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , t m δ ¯ , ξ 0 ¯ , η ¯ + t m Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = 0

and

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( η m l W δ ¯ , ξ 0 ¯ , η ¯ + η m l Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , η m l δ ¯ , ξ 0 ¯ , η ¯ + η m l Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = 0 .

For any ( φ , ψ ) X p , q ( ) , by Proposition 3.1, there exist some constants c 01 , c 02 , , c 0 k , c 11 , c 12 , , c 1 k , , c N 1 , c N 2 , , c N k such that

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( φ , ψ ) = l = 0 N m = 1 k c l m ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) , ( φ , ψ ) h .

Let s denote t m or η m l for any l = 1 , 2 , , N and m = 1 , 2 , , k . Then,

(5.1) 0 = s J ˜ ε ( t ¯ , η ¯ ) = J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( s W δ ¯ , ξ 0 ¯ , η ¯ + s Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , s δ ¯ , ξ 0 ¯ , η ¯ + s Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) * ( a ( x ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) , a ( x ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) ) , ( s W δ ¯ , ξ 0 ¯ , η ¯ + s Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , s δ ¯ , ξ 0 ¯ , η ¯ + s Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( s W δ ¯ , ξ 0 ¯ , η ¯ + s Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , s δ ¯ , ξ 0 ¯ , η ¯ + s Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h .

We prove that for any ε > 0 small enough, there holds

c i j = 0 , for any  i = 0 , 1 , , N  and  j = 1 , 2 , , k .

For any l = 1 , 2 , , N and m = 1 , 2 , , k , we can check that there hold

(5.2) ( t m W δ ¯ , ξ 0 ¯ , η ¯ , t m δ ¯ , ξ 0 ¯ , η ¯ ) = 1 2 t m Ψ δ m , ξ m 0 , η m 0 + l = 1 N η m l Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m 0 + l = 1 N η m l Φ δ m , ξ m 0 , η m l ,

and

(5.3) ( η m l ( W δ ¯ , ξ 0 ¯ , η ¯ ) , η m l ( δ ¯ , ξ 0 ¯ , η ¯ ) ) = ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) .

Using (2.8)–(2.11) and (5.2)–(5.3), we have

(5.4) i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( t m W δ ¯ , ξ 0 ¯ , η ¯ , t m δ ¯ , ξ 0 ¯ , η ¯ ) h = 1 2 t m i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( Ψ δ m , ξ m 0 , η m 0 , Φ δ m , ξ m 0 , η m 0 ) h 1 2 t m i = 0 N j = 1 k l = 1 N c i j η m l ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) h = 1 2 t m i = 0 N j = 1 k c i j δ i 0 δ j m B ( 0 , r 0 δ m ) ( p a δ m , ξ m 0 , η m χ δ m , η m 2 V 1,0 p 1 ( Φ 1,0 0 ) 2 + q a δ m , ξ m 0 , η m χ δ m , η m 2 U 1,0 q 1 ( Ψ 1,0 0 ) 2 ) d x 1 2 t m i = 0 N j = 1 k l = 1 N c i j η m l δ i l δ j m B ( 0 , r 0 δ m ) a δ m , ξ m 0 , η m χ δ m , η m 2 ( p V 1,0 p 1 ( Φ 1,0 l ) 2 + q U 1,0 q 1 ( Ψ 1,0 l ) 2 ) d x + O ( δ m 2 ) ,

(5.5) i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( η m l W δ ¯ , ξ 0 ¯ , η ¯ , η m l δ ¯ , ξ 0 ¯ , η ¯ ) h = i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) h = i = 0 N j = 1 k c i j δ i l δ j m B ( 0 , r 0 δ m ) a δ m , ξ m 0 , η m χ δ m , η m 2 ( p V 1,0 p 1 ( Φ 1,0 l ) 2 + q U 1,0 q 1 ( Ψ 1,0 l ) 2 ) d x + O ( δ m 2 ) ,

and

(5.6) i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( s Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , s Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = i = 0 N j = 1 k c i j ( s Ψ δ j , ξ j 0 , η j i , s Φ δ j , ξ j 0 , η j i ) , ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h ,

where a δ m , ξ m 0 , η m ( z ) = a ( exp ξ m 0 ( δ m z + δ m η m ) ) and χ δ m , η m ( z ) = χ ( δ m z + η m ) .

For any ϑ ( 0 , 1 ) , with the aid of Proposition 3.1, by the Hölder inequality, we have

(5.7) i = 0 N j = 1 k c i j ( t m Ψ δ j , ξ j 0 , η j i , t m Φ δ j , ξ j 0 , η j i ) , ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h C i = 0 N j = 1 k c i j δ j m δ ( δ N q + 1 Ψ 1,0 i ( δ 1 z η ) ) δ = 1 W ˙ 1 , p * ( R N ) g Φ ε , t ¯ , ξ 0 ¯ , η ¯ q * + δ ( δ N p + 1 Φ 1,0 i ( δ 1 z η ) ) δ = 1 W ˙ 1 , q * ( R N ) g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ p * + O ( ε 2 log ε ) = o ( ε ϑ )

and

(5.8) i = 0 N j = 1 k c i j ( η m l Ψ δ j , ξ j 0 , η j i , η m l Φ δ j , ξ j 0 , η j i ) , ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h i = 0 N j = 1 k c i j δ j m ( η l Ψ 1,0 i ( z η ) W ˙ 1 , p * ( R N ) g Φ ε , t ¯ , ξ 0 ¯ , η ¯ q * + η l Φ 1,0 i ( z η ) W ˙ 1 , q * ( R N ) g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ p * ) + O ( ε 2 log ε ) = o ( ε ϑ ) .

Therefore, by (5.4)–(5.8), we deduce that the linear system in (5.1) has only a trivial solution provided that ε > 0 small enough. This completes the proof.□

In the next lemma, we give the asymptotic expansion of J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) as ε 0 .

Lemma 5.2

Under the assumptions of Theorem 1.1, if δ ¯ is as in (2.5), then there holds

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) = j = 1 k a ( ξ j 0 ) 2 N L 1 + c 1 ε c 2 ε log ε + Ψ ( t j , η j ) ε + o ( ε ) ,

as ε 0 , C 1 -uniformly with respect to η ¯ in ( R N ) k and to t ¯ in compact subsets of ( R + ) k , where L 1 is given in (1.10), c 1 and c 2 are given in (3.5), and Ψ ( t j , η j ) is defined as (3.6).

Proof

C 0 -uniform estimate.

Since d g ( ξ j 0 , ξ m 0 ) > r 0 for any j m , by the definition of the function χ ( z ) , there holds

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) = j = 1 k J ε ( W δ j , ξ j 0 , η j , H δ j , ξ j 0 , η j ) = j = 1 k a ( ξ j 0 ) g W δ j , ξ j 0 , η j g H δ j , ξ j 0 , η j d v g I 1 + h W δ j , ξ j 0 , η j H δ j , ξ j 0 , η j d v g I 2 1 p + 1 α ε H δ j , ξ j 0 , η j p + 1 α ε d v g I 3 1 q + 1 β ε W δ j , ξ j 0 , η j q + 1 β ε d v g I 4 + j = 1 k ( a ( x ) a ( ξ j 0 ) ) g W δ j , ξ j 0 , η j g H δ j , ξ j 0 , η j d v g I 5 + ( a ( x ) a ( ξ j 0 ) ) h W δ j , ξ j 0 , η j H δ j , ξ j 0 , η j d v g I 6 1 p + 1 α ε ( a ( x ) a ( ξ j 0 ) ) H δ j , ξ j 0 , η j p + 1 α ε d v g I 7 1 q + 1 β ε ( a ( x ) a ( ξ j 0 ) ) W δ j , ξ j 0 , η j q + 1 β ε d v g I 8 .

First of all, we estimate I 1 , I 2 , I 3 , and I 4 :

I 1 = R N a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a ( χ δ j , η j U 1,0 ( z ) ) z b ( χ δ j , η j V 1,0 ( z ) ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = R N a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z + o ( δ j 2 ) = R N a , b = 1 N δ a b + δ j 2 2 s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) z a U 1,0 ( z ) z b V 1,0 ( z ) × 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( δ j 2 ) = R N U 1,0 V 1,0 d z + δ j 2 2 a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) R N z s z t z a U 1,0 ( z ) z b V 1,0 ( z ) d z + δ j 2 2 a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) η j s η j t R N z a U 1,0 ( z ) z b V 1,0 ( z ) d z δ j 2 4 s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N z s 2 U 1,0 V 1,0 d z δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N U 1,0 V 1,0 d z + o ( δ j 2 ) = R N U 1,0 V 1,0 d z + ε t j 2 a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) R N U 1,0 ( z ) V 1,0 ( z ) z 2 z a z b z s z t d z + ε t j 2 a , s , t = 1 N 2 g ξ j 0 a a y s y t ( 0 ) η j s η j t R N U 1,0 ( z ) V 1,0 ( z ) z 2 z a 2 d z ε t j 4 s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N U 1,0 ( z ) V 1,0 ( z ) z s 2 d z ε t j 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N U 1,0 ( z ) V 1,0 ( z ) d z + o ( ε )

and

I 2 = δ j 2 R N h δ j , ξ j 0 , η j χ δ j , η j 2 U 1,0 ( z ) V 1,0 ( z ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = δ j 2 R N ( h ( ξ j 0 ) + O ( δ j ) ) U 1,0 ( z ) V 1,0 ( z ) ( 1 + O ( δ j 2 ) ) d z + o ( δ j 2 ) = ε t j h ( ξ j 0 ) R N U 1,0 ( z ) V 1,0 ( z ) d z + o ( ε ) ,

where χ δ j , η j ( z ) = χ ( δ j z + η j ) and h δ j , ξ j 0 , η j ( z ) = h ( exp ξ j 0 ( δ j z + δ j η j ) ) . Using the Taylor formula, we have

I 3 = 1 p + 1 H δ j , ξ j 0 , η j p + 1 d v g + α ε H δ j , ξ j 0 , η j p + 1 ( p + 1 ) 2 H δ j , ξ j 0 , η j p + 1 log H δ j , ξ j 0 , η j p + 1 d v g + o ( δ j 2 ) = 1 p + 1 + α ε ( p + 1 ) 2 R N V 1,0 p + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z α ε p + 1 R N V 1,0 p + 1 log ( δ j N p + 1 V 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( δ j 2 ) = 1 p + 1 R N V 1,0 p + 1 d z + α ε p + 1 1 p + 1 R N V 1,0 p + 1 d z R N V 1,0 p + 1 log V 1,0 d z + N α ε 2 ( p + 1 ) 2 log ( ε t j ) R N V 1,0 p + 1 d z ε t j 4 ( p + 1 ) s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N V 1,0 p + 1 z s 2 d z ε t j 4 ( p + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N V 1,0 p + 1 d z + o ( ε )

and

I 4 = 1 q + 1 W δ j , ξ j 0 , η j q + 1 d v g + β ε W δ j , ξ j 0 , η j q + 1 ( q + 1 ) 2 W δ j , ξ j 0 , η j q + 1 log W δ j , ξ j 0 , η j q + 1 d v g + o ( δ j 2 ) = 1 q + 1 + β ε ( q + 1 ) 2 R N U 1,0 q + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z β ε q + 1 R N U 1,0 q + 1 log ( δ j N q + 1 U 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( δ j 2 ) = 1 q + 1 R N U 1,0 q + 1 d z + β ε q + 1 1 q + 1 R N U 1,0 q + 1 d z R N U 1,0 q + 1 log U 1,0 d z + N β ε 2 ( q + 1 ) 2 log ( ε t j ) R N U 1,0 q + 1 d z ε t j 4 ( q + 1 ) s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N U 1,0 q + 1 z s 2 d z ε t j 4 ( q + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N U 1,0 q + 1 d z + o ( ε ) .

Now, we estimate I 5 , I 6 , I 7 , and I 8 . Let a ˜ ( z ) = a ( exp ξ j 0 ( z ) ) , since ξ j 0 is a non-degenerate critical point of a ( x ) ,

I 5 = R N ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a ( χ δ j , η j U 1,0 ( z ) ) z b ( χ δ j , η j V 1,0 ( z ) ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = δ j 2 2 R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) U 1,0 V 1,0 d z + o ( δ j 2 ) = ε t j 2 s = 1 N 2 a ˜ y s 2 ( 0 ) R N z s 2 U 1,0 V 1,0 d z + ε t j 2 s , t = 1 N 2 a ˜ y s y t ( 0 ) η j s η j t R N U 1,0 V 1,0 d z + o ( ε ) ,

I 6 = δ j 2 R N ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) h δ j , ξ j 0 , η j χ δ j , η j 2 U 1,0 ( z ) V 1,0 ( z ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = δ j 4 2 R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) h δ j , ξ j 0 , η j χ δ j , η j 2 U 1,0 ( z ) V 1,0 ( z ) d z + o ( δ j 4 ) = O ( ε 2 ) = o ( ε ) ,

and

I 7 = 1 p + 1 ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) H δ j , ξ j 0 , η j p + 1 d v g + α ε ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) H δ j , ξ j 0 , η j p + 1 ( p + 1 ) 2 H δ j , ξ j 0 , η j p + 1 log H δ j , ξ j 0 , η j p + 1 d v g + o ( δ j 2 ) = ε t j 2 ( p + 1 ) s = 1 N 2 a ˜ y s 2 ( 0 ) R N V 1,0 p + 1 z s 2 d z + ε t j 2 ( p + 1 ) s , t = 1 N 2 a ˜ y s y t ( 0 ) η j s η j t R N V 1,0 p + 1 d z + o ( ε ) ,

I 8 = 1 q + 1 ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) W δ j , ξ j 0 , η j q + 1 d v g + β ε ( a ˜ ( δ j z + δ j η j ) a ˜ ( 0 ) ) W δ j , ξ j 0 , η j q + 1 ( q + 1 ) 2 W δ j , ξ j 0 , η j q + 1 log W δ j , ξ j 0 , η j q + 1 d v g + o ( δ j 2 ) = ε t j 2 ( q + 1 ) s = 1 N 2 a ˜ y s 2 ( 0 ) R N U 1,0 q + 1 z s 2 d z + ε t j 2 ( q + 1 ) s , t = 1 N 2 a ˜ y s y t ( 0 ) η j s η j t R N U 1,0 q + 1 d z + o ( ε ) .

Therefore, taking into account that

(5.9) a , b = 1 N g ξ j 0 a a y b 2 ( 0 ) a , b = 1 N g ξ j 0 a b y a y b ( 0 ) = Scal g ( ξ j 0 )

and

(5.10) Δ g a ( ξ j 0 ) = s = 1 N 2 a ˜ y s 2 ( 0 ) , D g 2 a ( ξ j 0 ) [ η j , η j ] = s , t = 1 N 2 a ˜ y s y t ( 0 ) η j s η j t ,

we obtain the C 0 -estimate.

C 1 -uniform estimate. For any j = 1 , 2 , , k , define

A ( δ j , ξ j 0 , η j ) = a ( x ) g W δ j , ξ j 0 , η j g H δ j , ξ j 0 , η j d v g , B ( δ j , ξ j 0 , η j ) = a ( x ) h W δ j , ξ j 0 , η j H δ j , ξ j 0 , η j d v g ,

and

C ( δ j , ξ j 0 , η j ) = 1 p + 1 α ε a ( x ) H δ j , ξ j 0 , η j p + 1 α ε d v g , D ( δ j , ξ j 0 , η j ) = 1 q + 1 β ε a ( x ) W δ j , ξ j 0 , η j q + 1 β ε d v g .

Let δ j = t j δ j , then δ j δ j = ε 2 . Set h ˜ ( z ) = h ( exp ξ j 0 ( z ) ) ; since ξ j 0 is a non-degenerate critical point of a ( x ) , we have

t j A ( δ j , ξ j 0 , η j ) = δ j δ j A ( δ j , ξ j 0 , η j ) = δ j δ j R N a ˜ ( δ j z + δ j η j ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a ( χ δ j , η j U 1,0 ( z ) ) z b ( χ δ j , η j V 1,0 ( z ) ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = δ j R N s = 1 N a ˜ y s ( δ j z + δ j η j ) ( z s + η j s ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z + δ j R N a ˜ ( δ j z + δ j η j ) a , b , s = 1 N g ξ j 0 a b y s ( δ j z + δ j η j ) ( z s + η j s ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z δ j R N a ˜ ( δ j z + δ j η j ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) × δ j 2 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = δ j δ j R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) U 1,0 V 1,0 d z + δ j δ j R N a ˜ ( 0 ) a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z δ j δ j 2 R N a ˜ ( 0 ) U 1,0 V 1,0 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = ε 2 s = 1 N 2 a ˜ y s 2 ( 0 ) R N z s 2 U 1,0 V 1,0 d z + ε 2 s , t = 1 N 2 a ˜ y s y t ( 0 ) η j s η j t R N U 1,0 V 1,0 d z + ε 2 a ˜ ( 0 ) a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) R N U 1,0 ( z ) V 1,0 ( z ) z 2 z a z b z s z t d z + ε 2 a ˜ ( 0 ) a , s , t = 1 N 2 g ξ j 0 a a y s y t ( 0 ) η j s η j t R N U 1,0 ( z ) V 1,0 ( z ) z 2 z a 2 d z ε 4 a ˜ ( 0 ) s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N z s 2 U 1,0 V 1,0 d z ε 4 a ˜ ( 0 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N U 1,0 V 1,0 d z + o ( ε ) ,

t j B ( δ j , ξ j 0 , η j ) = δ j δ j B ( δ j , ξ j 0 , η j ) = δ j δ j R N δ j 2 a ˜ ( δ j z + δ j η j ) h ˜ ( δ j z + δ j η j ) χ δ j , η j 2 U 1,0 ( z ) V 1,0 ( z ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = 2 δ j δ j R N a ˜ ( 0 ) h ˜ ( 0 ) U 1,0 ( z ) V 1,0 ( z ) d z + o ( ε ) = ε a ˜ ( 0 ) h ˜ ( 0 ) R N U 1,0 ( z ) V 1,0 ( z ) d z + o ( ε ) ,

and

t j C ( δ j , ξ j 0 , η j ) = δ j δ j C ( δ j , ξ j 0 , η j ) = δ j 1 p + 1 + α ε ( p + 1 ) 2 δ j R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z α δ j ε p + 1 δ j R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 log ( δ j N p + 1 V 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = δ j p + 1 R N s = 1 N a ˜ y s ( δ j z + δ j η j ) ( z s + η j s ) V 1,0 p + 1 d z + N α δ j ε ( p + 1 ) 2 δ j R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 d z δ δ j 2 ( p + 1 ) R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = ε 2 ( p + 1 ) s = 1 N a ˜ y s 2 ( 0 ) R N z s 2 V 1,0 p + 1 d z + ε 2 ( p + 1 ) s , t = 1 N a ˜ y s y t ( 0 ) η j s η j t R N V 1,0 p + 1 d z + N α a ˜ ( 0 ) ε 2 ( p + 1 ) 2 t j R N V 1,0 p + 1 d z a ˜ ( 0 ) ε 4 ( p + 1 ) s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N V 1,0 p + 1 z s 2 d z a ˜ ( 0 ) ε 4 ( p + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N V 1,0 p + 1 d z + o ( ε ) ,

t j D ( δ j , ξ j 0 , η j ) = δ j δ j D ( δ j , ξ j 0 , η j ) = δ j 1 q + 1 + β ε ( q + 1 ) 2 δ j R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z β δ j ε q + 1 δ j R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 log ( δ j N q + 1 U 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = δ j q + 1 R N s = 1 N a ˜ y s ( δ j z + δ j η j ) ( z s + η j s ) U 1,0 q + 1 d z + N β δ j ε ( q + 1 ) 2 δ j R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 d z δ δ j 2 ( q + 1 ) R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = ε 2 ( q + 1 ) s = 1 N a ˜ y s 2 ( 0 ) R N z s 2 U 1,0 q + 1 d z + ε 2 ( q + 1 ) s , t = 1 N a ˜ y s y t ( 0 ) η j s η j t R N U 1,0 q + 1 d z + N β a ˜ ( 0 ) ε 2 ( q + 1 ) 2 t j R N U 1,0 q + 1 d z a ˜ ( 0 ) ε 4 ( q + 1 ) s , r = 1 N 2 g ξ j 0 r r y s 2 ( 0 ) R N U 1,0 q + 1 z s 2 d z a ˜ ( 0 ) ε 4 ( q + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j s η j t R N U 1,0 q + 1 d z + o ( ε ) .

Using (5.9) and (5.10) again, we complete the C 1 -estimate with respect to t ¯ in compact subsets of ( R + ) k .

In a similar way, we consider the derivative with respect to η ¯ in ( R N ) k . For any 1 s N , we have

η j s A ( δ j , ξ j 0 , η j ) = η j s R N a ˜ ( δ j z + δ j η j ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a ( χ δ j , η j U 1,0 ( z ) ) z b ( χ δ j , η j V 1,0 ( z ) ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = δ j R N s = 1 N a ˜ y s ( δ j z + δ j η j ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z + δ j R N a ˜ ( δ j z + δ j η j ) a , b , s = 1 N g ξ j 0 a b y s ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z δ j 2 2 R N a ˜ ( δ j z + δ j η j ) a , b = 1 N g ξ j 0 a b ( δ j z + δ j η j ) z a U 1,0 ( z ) z b V 1,0 ( z ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z + o ( ε ) = δ j 2 R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z t + η j t ) U 1,0 V 1,0 d z + δ j 2 R N a ˜ ( 0 ) a , b , s , t = 1 N 2 g ξ j 0 a b y s y t ( 0 ) ( z t + η j t ) z a U 1,0 ( z ) z b V 1,0 ( z ) d z δ j 2 2 R N a ˜ ( 0 ) U 1,0 V 1,0 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z + o ( ε ) = ε t j s , t = 1 N 2 a ˜ y s y t ( 0 ) η j t R N U 1,0 V 1,0 d z + ε t j a ˜ ( 0 ) a , s , t = 1 N 2 g ξ j 0 a a y s y t ( 0 ) η j t R N U 1,0 ( z ) V 1,0 ( z ) z 2 z a 2 d z ε t j a ˜ ( 0 ) 2 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j t R N U 1,0 V 1,0 d z + o ( ε ) ,

η j s B ( δ j , ξ j 0 , η j ) = η j s R N δ j 2 a ˜ ( δ j z + δ j η j ) h ˜ ( δ j z + δ j η j ) χ δ j , η j 2 U 1,0 ( z ) V 1,0 ( z ) g ξ j 0 ( δ j z + δ j η j ) 1 2 d z = o ( ε ) ,

and

η j s C ( δ j , ξ j 0 , η j ) = 1 p + 1 + α ε ( p + 1 ) 2 η j s R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z α ε p + 1 η j s R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 log ( δ j N p + 1 V 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = δ j p + 1 R N s = 1 N a ˜ y s ( δ j z + δ j η j ) V 1,0 p + 1 d z δ j 2 2 ( p + 1 ) R N a ˜ ( δ j z + δ j η j ) V 1,0 p + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z = δ j 2 p + 1 R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z t + η j t ) V 1,0 p + 1 d z δ j 2 2 ( p + 1 ) R N a ˜ ( 0 ) V 1,0 p + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z = ε t j p + 1 s , t = 1 N 2 a ˜ y s y t ( 0 ) η j t R N V 1,0 p + 1 d z ε t j a ˜ ( 0 ) 2 ( p + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j t R N V 1,0 p + 1 d z ,

η j s D ( δ j , ξ j 0 , η j ) = 1 q + 1 + β ε ( q + 1 ) 2 η j s R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z β ε q + 1 η j s R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 log ( δ j N q + 1 U 1,0 ) 1 δ j 2 4 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z s + η j s ) ( z t + η j t ) d z + o ( ε ) = δ j q + 1 R N s = 1 N a ˜ y s ( δ j z + δ j η j ) U 1,0 q + 1 d z δ j 2 2 ( q + 1 ) R N a ˜ ( δ j z + δ j η j ) U 1,0 q + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z = δ j 2 q + 1 R N s , t = 1 N 2 a ˜ y s y t ( 0 ) ( z t + η j t ) U 1,0 q + 1 d z δ j 2 2 ( q + 1 ) R N a ˜ ( 0 ) U 1,0 q + 1 s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) ( z t + η j t ) d z = ε t j q + 1 s , t = 1 N 2 a ˜ y s y t ( 0 ) η j t R N U 1,0 q + 1 d z ε t j a ˜ ( 0 ) 2 ( q + 1 ) s , t , r = 1 N 2 g ξ j 0 r r y s y t ( 0 ) η j t R N U 1,0 q + 1 d z .

So we have the C 1 -estimate with respect to η ¯ in ( R N ) k .□

We now give the asymptotic expansion of the function J ˜ ε defined in (3.4) as ε 0 .

Lemma 5.3

Under the assumptions of Theorem 1.1, if δ ¯ is as in (2.5), then there holds

J ˜ ε ( t ¯ , η ¯ ) = J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) + o ( ε ) ,

as ε 0 , C 1 -uniformly with respect to η ¯ in ( R N ) k and to t ¯ in compact subsets of ( R + ) k .

Proof

C 0 -uniform estimate. It holds that

J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) = a ( x ) ( g W δ ¯ , ξ 0 ¯ , η ¯ Φ ε , t ¯ , ξ 0 ¯ , η ¯ + h W δ ¯ , ξ 0 ¯ , η ¯ Φ ε , t ¯ , ξ 0 ¯ , η ¯ f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g + a ( x ) ( g δ ¯ , ξ 0 ¯ , η ¯ Ψ ε , t ¯ , ξ 0 ¯ , η ¯ + h δ ¯ , ξ 0 ¯ , η ¯ Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g + a ( x ) ( g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g Φ ε , t ¯ , ξ 0 ¯ , η ¯ + h Ψ ε , t ¯ , ξ 0 ¯ , η ¯ Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g a ( x ) ( F ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) F ε ( δ ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g a ( x ) ( G ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) G ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g ,

where F ε ( u ) = 0 u f ε ( s ) d s , G ε ( u ) = 0 u g ε ( s ) d s . Since

a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ Φ ε , t ¯ , ξ 0 ¯ , η ¯ d v g = Φ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ d v g a ( x ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ Δ g W δ ¯ , ξ 0 ¯ , η ¯ d v g

and

a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ Ψ ε , t ¯ , ξ 0 ¯ , η ¯ d v g = Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ d v g a ( x ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ Δ g δ ¯ , ξ 0 ¯ , η ¯ d v g ,

we need estimates of

Φ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ d v g and Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ d v g .

By (4.9), (4.10), and Proposition 3.1, we have

Φ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ d v g g a ( x ) g W δ ¯ , ξ 0 ¯ , η ¯ p + 1 p Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 = o ( ε )

and

Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ d v g g a ( x ) g δ ¯ , ξ 0 ¯ , η ¯ d v g q + 1 q Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 = o ( ε ) .

By Proposition 3.1, Lemma 4.2, using the Hölder and Sobolev inequalities, we obtain

a ( x ) ( Δ g W δ ¯ , ξ 0 ¯ , η ¯ + h W δ ¯ , ξ 0 ¯ , η ¯ f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ d v g C Δ g W δ ¯ , ξ 0 ¯ , η ¯ + h W δ ¯ , ξ 0 ¯ , η ¯ f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) p + 1 p Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 = o ( ε ) ,

a ( x ) ( Δ g δ ¯ , ξ 0 ¯ , η ¯ + h δ ¯ , ξ 0 ¯ , η ¯ g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ d v g C Δ g δ ¯ , ξ 0 ¯ , η ¯ + h δ ¯ , ξ 0 ¯ , η ¯ g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) q + 1 q Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 = o ( ε ) ,

and

a ( x ) ( g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g Φ ε , t ¯ , ξ 0 ¯ , η ¯ + h Ψ ε , t ¯ , ξ 0 ¯ , η ¯ Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g C g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ p * g Φ ε , t ¯ , ξ 0 ¯ , η ¯ q * + C Ψ ε , t ¯ , ξ 0 ¯ , η ¯ 2 Φ ε , t ¯ , ξ 0 ¯ , η ¯ 2 = o ( ε ) .

Moreover, by the mean value formula, Lemma 2.4, we obtain

a ( x ) ( F ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) F ε ( δ ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g C δ ¯ , ξ 0 ¯ , η ¯ p 1 α ε Φ ε , t ¯ , ξ 0 ¯ , η ¯ 2 d v g + C Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 α ε d v g C Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 α ε 2 j = 1 k H δ j , ξ j 0 , η j p + 1 α ε p 1 α ε + C Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 α ε p + 1 α ε = o ( ε )

and

a ( x ) ( G ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) G ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) d v g C W δ ¯ , ξ 0 ¯ , η ¯ q 1 β ε Ψ ε , t ¯ , ξ 0 ¯ , η ¯ 2 d v g + C Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 β ε d v g C Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 β ε 2 j = 1 k W δ j , ξ j 0 , η j q + 1 β ε q 1 β ε + C Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 β ε q + 1 β ε = o ( ε ) .

This completes the proof of the C 0 -estimate.

C 1 -uniform estimate.

For any ( φ , ψ ) X p , q ( ) , by Proposition 3.1, there exist some constants c 01 , c 02 , , c 0 k , c 11 , c 12 , , c 1 k , , c N 1 , c N 2 , , c N k such that

(5.11) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( φ , ψ ) = l = 0 N m = 1 k c l m ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) , ( φ , ψ ) h .

Moreover, by [6, Lemma 5.4], we have

(5.12) l = 0 N m = 1 k c l m = O ( ε ϑ ) ,

for any ϑ ( 0 , 1 ) . By (5.2) and (5.3), for any 1 l N and 1 m k , we can compute

t m J ˜ ε ( t ¯ , η ¯ ) t m J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) = ( J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ) ( t m W δ ¯ , ξ 0 ¯ , η ¯ , t m δ ¯ , ξ 0 ¯ , η ¯ ) + J ˜ ε ( t ¯ , η ¯ ) ( t m Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , t m Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = 1 2 t m ( J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ) Ψ δ m , ξ m 0 , η m 0 + l = 1 N η m l Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m 0 + l = 1 N η m l Φ δ m , ξ m 0 , η m l + J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( t m Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , t m Φ ε , t ¯ , ξ 0 ¯ , η ¯ )

and

η m l J ˜ ε ( t ¯ , η ¯ ) η m l J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) = ( J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ) ( η m l W δ ¯ , ξ 0 ¯ , η ¯ , η m l δ ¯ , ξ 0 ¯ , η ¯ ) + J ˜ ε ( t ¯ , η ¯ ) ( η m l Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , η m l Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = ( J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ) ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) + J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( η m l Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , η m l Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) .

For any 0 l N and 1 m k , we have

( J ˜ ε ( t ¯ , η ¯ ) J ε ( W δ ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ ) ) ( Ψ δ m , ξ m 0 , η m l , Φ δ m , ξ m 0 , η m l ) = Φ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g Ψ δ m , ξ m 0 , η m l d v g Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g Φ δ m , ξ m 0 , η m l d v g + a ( x ) ( Δ g Ψ δ m , ξ m 0 , η m l + h Ψ δ m , ξ m 0 , η m l f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ δ m , ξ m 0 , η m l ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ d v g + a ( x ) ( Δ g Φ δ m , ξ m 0 , η m l + h Φ δ m , ξ m 0 , η m l g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ δ m , ξ m 0 , η m l ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ d v g a ( x ) ( f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) Φ δ m , ξ m 0 , η m l d v g a ( x ) ( g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) Ψ δ m , ξ m 0 , η m l d v g .

Similar to (4.9) and (4.10), we have

g a ( x ) g Ψ δ m , ξ m 0 , η m l p + 1 p d v g = O ( ε p + 1 p ) and g a ( x ) g Φ δ m , ξ m 0 , η m l q + 1 q d v g = O ( ε q + 1 q ) .

This with Proposition 3.1 yields

Φ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g Ψ δ m , ξ m 0 , η m l d v g = o ( ε ) and Ψ ε , t ¯ , ξ 0 ¯ , η ¯ g a ( x ) g Φ δ m , ξ m 0 , η m l d v g = o ( ε ) .

By Proposition 3.1, using the Hölder and Sobolev inequalities, arguing as Lemma 4.2, for any 0 l N and 1 m k , we have

a ( x ) ( Δ g Ψ δ m , ξ m 0 , η m l + h Ψ δ m , ξ m 0 , η m l f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ δ m , ξ m 0 , η m l ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ d v g C Δ g Ψ δ m , ξ m 0 , η m l + h Ψ δ m , ξ m 0 , η m l f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ δ m , ξ m 0 , η m l p + 1 p Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 = o ( ε )

and

a ( x ) ( Δ g Φ δ m , ξ m 0 , η m l + h Φ δ m , ξ m 0 , η m l g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ δ m , ξ m 0 , η m l ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ d v g C Δ g Φ δ m , ξ m 0 , η m l + h Φ δ m , ξ m 0 , η m l g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ δ m , ξ m 0 , η m l q + 1 q Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 = o ( ε ) .

Moreover, by the mean value formula, Lemma 2.4, we obtain

a ( x ) ( f ε ( δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) f ε ( δ ¯ , ξ 0 ¯ , η ¯ ) Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) Φ δ m , ξ m 0 , η m l d v g C δ ¯ , ξ 0 ¯ , η ¯ p 2 α ε Φ ε , t ¯ , ξ 0 ¯ , η ¯ 2 Φ δ m , ξ m 0 , η m l d v g C Φ δ m , ξ m 0 , η m l p + 1 Φ ε , t ¯ , ξ 0 ¯ , η ¯ p + 1 2 j = 1 k H δ j , ξ j 0 , η j ( p 2 α ε ) ( p + 1 ) p 2 p 2 α ε = o ( ε )

and

a ( x ) ( g ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) g ε ( W δ ¯ , ξ 0 ¯ , η ¯ ) Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ) Ψ δ m , ξ m 0 , η m l d v g C W δ ¯ , ξ 0 ¯ , η ¯ q 2 β ε Ψ ε , t ¯ , ξ 0 ¯ , η ¯ 2 Ψ δ m , ξ m 0 , η m l d v g + C Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q β ε Ψ δ m , ξ m , η m l d v g , if  q > 2 , C W δ ¯ , ξ 0 ¯ , η ¯ q 2 β ε Ψ ε , t ¯ , ξ 0 ¯ , η ¯ 2 Ψ δ m , ξ m 0 , η m l d v g , if  q 2 , C Ψ δ m , ξ m 0 , η m l q + 1 Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 2 j = 1 k W δ j , ξ j 0 , η j ( q 2 β ε ) ( q + 1 ) q 2 q 2 β ε + C Ψ δ m , ξ m 0 , η m l q + 1 Ψ ε , t ¯ , ξ 0 ¯ , η ¯ ( q β ε ) ( q + 1 ) q q β ε , if  q > 2 , C Ψ δ m , ξ m 0 , η m l q + 1 Ψ ε , t ¯ , ξ 0 ¯ , η ¯ q + 1 2 j = 1 k W δ j , ξ j 0 , η j ( q 2 β ε ) ( q + 1 ) q 2 q 2 β ε , if  q 2 , = o ( ε ) .

Finally, with the aid of (5.7)–(5.8) and (5.11)–(5.12), we obtain

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( t m Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , t m Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( t m Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , t m Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = i = 0 N j = 1 k c i j δ j m ( t m Ψ δ j , ξ j 0 , η j i , t m Φ δ j , ξ j 0 , η j i ) , ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = o ( ε )

and

J ε ( W δ ¯ , ξ 0 ¯ , η ¯ + Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , δ ¯ , ξ 0 ¯ , η ¯ + Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) ( η m l Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , η m l Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) = i = 0 N j = 1 k c i j ( Ψ δ j , ξ j 0 , η j i , Φ δ j , ξ j 0 , η j i ) , ( η m l Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , η m l Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = i = 0 N j = 1 k c i j δ j m ( η m l Ψ δ j , ξ j 0 , η j i , η m l Φ δ j , ξ j 0 , η j i ) , ( Ψ ε , t ¯ , ξ 0 ¯ , η ¯ , Φ ε , t ¯ , ξ 0 ¯ , η ¯ ) h = o ( ε ) .

This concludes the proof.□

Acknowledgments

The authors are very grateful for the anonymous reviewers for their careful reading of the manuscript and valuable comments.

  1. Funding information: The authors were supported by National Science Foundation of Chongqing, China (CSTB2024NSCQ-LZX0038), and Chongqing Graduate Student Research Innovation Project (CYB25100).

  2. Author contributions: Zexi Wang: Writing – original draft, writing – review & editing. Wenjing Chen: Supervision, writing – review & editing.

  3. Conflict of interest: The authors state no conflict of interest.

  4. Data availability statement: Data sharing is not applicable to this article as no new data were created and analyzed in this study.

References

[1] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269–296, https://ci.nii.ac.jp/naid/10019989716. Search in Google Scholar

[2] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253–294, https://doi.org/10.1002/cpa.3160410302. Search in Google Scholar

[3] R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49, https://doi.org/10.2307/1995057. Search in Google Scholar

[4] D. Bonheure, E. Moreira dos Santos, and H. Tavares, Hamiltonian elliptic systems: a guide to variational frameworks, Port. Math. 71 (2014), 301–395, https://doi.org/10.4171/PM/1954. Search in Google Scholar

[5] W. J. Chen, Clustered solutions for supercritical elliptic equations on Riemannian manifolds, Adv. Nonlinear Anal. 8 (2019), 1213–1226, https://doi.org/10.1515/anona-2017-0277. Search in Google Scholar

[6] W. J. Chen and Z. X. Wang, Multiple blowing-up solutions for asymptotically critical Lane-Emden systems on Riemannian manifolds, J. Geom. Anal. 34 (2024), 298, https://doi.org/10.1007/s12220-024-01722-6. Search in Google Scholar

[7] M. Clapp, M. Ghimenti, and A. M. Micheletti, Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold, J. Math. Anal. Appl. 420 (2014), 314–333, https://doi.org/10.1016/j.jmaa.2014.05.079. Search in Google Scholar

[8] M. Clapp and A. Saldaña, Entire nodal solutions to the critical Lane-Emden system, Comm. Partial Differential Equations 45 (2020), 285–302, https://doi.org/10.1080/03605302.2019.1670676. Search in Google Scholar

[9] E. N. Dancer, A. M. Micheletti, and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds, Manuscr. Math. 128 (2009), 163–193, https://doi.org/10.1007/s00229-008-0225-4. Search in Google Scholar

[10] S. B. Deng, Multipeak solutions for asymptotically critical elliptic equations on Riemannian manifolds, Nonlinear Anal. 74 (2011), 859–881, https://doi.org/10.1016/j.na.2010.09.036. Search in Google Scholar

[11] S. B. Deng, M. Musso, and J. C. Wei, New type of sign-changing blow-up solutions for scalar curvature type equations, Int. Math. Res. Not. IMRN 2019 (2019), 4159–4197, https://doi.org/10.1093/imrn/rnx245. Search in Google Scholar

[12] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408, https://doi.org/10.1016/0022-1236(86)90096-0. Search in Google Scholar

[13] R. L. Frank, S. Kim, and A. Pistoia, Non-degeneracy for the critical Lane-Emden system, Proc. Amer. Math. Soc. 149 (2021), 265–278, https://doi.org/10.48550/arXiv.1908.11122. Search in Google Scholar

[14] M. Ghimenti, A. M. Micheletti, and A. Pistoia, Blow-up solutions concentrated along minimal submanifolds for some supercritical elliptic problems on Riemannian manifolds, J. Fixed Point Theory Appl. 14 (2013), 503–525, https://doi.org/10.1007/s11784-014-0168-1. Search in Google Scholar

[15] A. Guimarães and E. Moreira dos Santos, On Hamiltonian systems with critical Sobolev exponents, J. Differential Equations 360 (2023), 314–346, https://doi.org/10.1016/j.jde.2023.02.050. Search in Google Scholar

[16] Y. X. Guo, Y. C. Hu, and S. L. Peng, Non-degeneracy of solution for critical Lane-Emden systems with linear perturbation, Calc. Var. Partial Differential Equations 63 (2024), 98, https://doi.org/10.1007/s00526-024-02695-8. Search in Google Scholar

[17] Q. Guo, J. Y. Liu, and S. J. Peng, Existence and non-degeneracy of positive multi-bubbling solutions to critical elliptic systems of Hamiltonian type, J. Differential Equations 355 (2023), 16–61, https://doi.org/10.1016/j.jde.2023.01.024. Search in Google Scholar

[18] Q. Guo, J. Y. Liu, and S. J. Peng, Existence of boundary layers for the supercritical Lane-Emden systems, arXiv preprint, (2023), arXiv.2306.00811, https://doi.org/10.48550/arXiv.2306.00811. Search in Google Scholar

[19] Q. Guo and S. J. Peng, Pure Neumann problem for slightly supercritical Lane-Emden system, Calc. Var. Partial Differential Equations 64 (2025), 6, https://doi.org/10.1007/s00526-024-02879-2. Search in Google Scholar

[20] J. Hulshof and R. C. A. M. Van der Vorst, Asymptotic behaviour of ground states, Proc. Amer. Math. Soc. 124 (1996), 2423–2431, https://doi.org/10.1090/S0002-9939-96-03669-6.Search in Google Scholar

[21] S. Jin and S. Kim, Coron’s problem for the critical Lane-Emden system, J. Funct. Anal. 285 (2023), 110077, https://doi.org/10.1016/j.jfa.2023.110077. Search in Google Scholar

[22] S. Kim and S. Moon, Asymptotic analysis on positive solutions of the Lane-Emden system with nearly critical exponents, Trans. Amer. Math. Soc. 376 (2023), 4835–4899, https://doi.org/10.1090/tran/8898. Search in Google Scholar

[23] S. Kim and A. Pistoia, Multiple blowing-up solutions to critical elliptic systems in bounded domains, J. Funct. Anal. 281 (2021), 109023, https://doi.org/10.1016/j.jfa.2021.109023. Search in Google Scholar

[24] Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445–1490, https://doi.org/10.1002/(SICI)1097-0312(199811/12)51:11/12<1445:AID-CPA9>3.0.CO;2-Z. Search in Google Scholar

[25] P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. I, Rev. Mat. Iberoam. 1 (1985), 145–201, https://doi.org/10.4171/RMI/6. Search in Google Scholar

[26] A. M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds, Calc. Var. Partial Differential Equations 34 (2009), 233–265, https://doi.org/10.1007/s00526-008-0183-4. Search in Google Scholar

[27] A. M. Micheletti and A. Pistoia, Nodal solutions for a singularly perturbed nonlinear elliptic problem on Riemannian manifolds, Adv. Nonlinear Stud. 9 (2009), 565–577, https://doi.org/10.1515/ans-2009-0308. Search in Google Scholar

[28] A. M. Micheletti, A. Pistoia, and J. Vétois, Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds, Indiana Univ. Math. J. 58 (2009), 1719–1746, http://www.jstor.org/stable/24903287. 10.1512/iumj.2009.58.3633Search in Google Scholar

[29] A. Pistoia and J. Vétois, Sign-changing bubble towers for asymptotically critical elliptic equations on Riemannian manifolds, J. Differential Equations 254 (2013), 4245–4278, https://doi.org/10.1016/j.jde.2013.02.017. Search in Google Scholar

[30] F. Robert and J. Vétois, Sign-changing blow-up for scalar curvature type equations, Comm. Partial Differential Equations 38 (2013), 1437–1465, https://doi.org/10.1080/03605302.2012.745552. Search in Google Scholar

[31] X. J. Wang, Sharp constant in a Sobolev inequality, Nonlinear Anal. 20 (1993), 261–268, https://doi.org/10.1016/0362-546X(93)90162-L. Search in Google Scholar

[32] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37, https://doi.org/10.18910/8577. Search in Google Scholar

Received: 2024-10-29
Revised: 2025-06-01
Accepted: 2025-06-24
Published Online: 2025-08-13

© 2025 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Incompressible limit for the compressible viscoelastic fluids in critical space
  3. Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
  4. Intervals of bifurcation points for semilinear elliptic problems
  5. On multiplicity of solutions to nonlinear Dirac equation with local super-quadratic growth
  6. Entire radial bounded solutions for Leray-Lions equations of (p, q)-type
  7. Combinatorial pth Calabi flows for total geodesic curvatures in spherical background geometry
  8. Sharp upper bounds for the capacity in the hyperbolic and Euclidean spaces
  9. Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
  10. Existence and non-degeneracy of the normalized spike solutions to the fractional Schrödinger equations
  11. Existence results for non-coercive problems
  12. Ground states for Schrödinger-Poisson system with zero mass and the Coulomb critical exponent
  13. Geometric characterization of generalized Hajłasz-Sobolev embedding domains
  14. Subharmonic solutions of first-order Hamiltonian systems
  15. Sharp asymptotic expansions of entire large solutions to a class of k-Hessian equations with weights
  16. Stability of pyramidal traveling fronts in time-periodic reaction–diffusion equations with degenerate monostable and ignition nonlinearities
  17. Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
  18. Existence results of variable exponent double-phase multivalued elliptic inequalities with logarithmic perturbation and convections
  19. Homoclinic solutions in periodic partial difference equations
  20. Classical solution for compressible Navier-Stokes-Korteweg equations with zero sound speed
  21. Properties of minimizers for L2-subcritical Kirchhoff energy functionals
  22. Asymptotic behavior of global mild solutions to the Keller-Segel-Navier-Stokes system in Lorentz spaces
  23. Blow-up solutions to the Hartree-Fock type Schrödinger equation with the critical rotational speed
  24. Qualitative properties of solutions for dual fractional parabolic equations involving nonlocal Monge-Ampère operator
  25. Regularity for double-phase functionals with nearly linear growth and two modulating coefficients
  26. Uniform boundedness and compactness for the commutator of an extension of Riesz transform on stratified Lie groups
  27. Normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians
  28. Existence of positive radial solutions of general quasilinear elliptic systems
  29. Low Mach number and non-resistive limit of magnetohydrodynamic equations with large temperature variations in general bounded domains
  30. Sharp viscous shock waves for relaxation model with degeneracy
  31. Bifurcation and multiplicity results for critical problems involving the p-Grushin operator
  32. Asymptotic behavior of solutions of a free boundary model with seasonal succession and impulsive harvesting
  33. Blowing-up solutions concentrated along minimal submanifolds for some supercritical Hamiltonian systems on Riemannian manifolds
  34. Stability of rarefaction wave for relaxed compressible Navier-Stokes equations with density-dependent viscosity
  35. Singularity for the macroscopic production model with Chaplygin gas
  36. Global strong solution of compressible flow with spherically symmetric data and density-dependent viscosities
  37. Global dynamics of population-toxicant models with nonlocal dispersals
  38. α-Mean curvature flow of non-compact complete convex hypersurfaces and the evolution of level sets
  39. High-energy solutions for coupled Schrödinger systems with critical growth and lack of compactness
  40. On the structure and lifespan of smooth solutions for the two-dimensional hyperbolic geometric flow equation
  41. Well-posedness for physical vacuum free boundary problem of compressible Euler equations with time-dependent damping
  42. On the existence of solutions of infinite systems of Volterra-Hammerstein-Stieltjes integral equations
  43. Remark on the analyticity of the fractional Fokker-Planck equation
  44. Continuous dependence on initial data for damped fourth-order wave equation with strain term
  45. Unilateral problems for quasilinear operators with fractional Riesz gradients
  46. Boundedness of solutions to quasilinear elliptic systems
  47. Existence of positive solutions for critical p-Laplacian equation with critical Neumann boundary condition
  48. Non-local diffusion and pulse intervention in a faecal-oral model with moving infected fronts
  49. Nonsmooth analysis of doubly nonlinear second-order evolution equations with nonconvex energy functionals
  50. Qualitative properties of solutions to the viscoelastic beam equation with damping and logarithmic nonlinear source terms
  51. Shape of extremal functions for weighted Sobolev-type inequalities
  52. One-dimensional boundary blow up problem with a nonlocal term
  53. Doubling measure and regularity to K-quasiminimizers of double-phase energy
  54. General solutions of weakly delayed discrete systems in 3D
  55. Global well-posedness of a nonlinear Boussinesq-fluid-structure interaction system with large initial data
  56. Optimal large time behavior of the 3D rate type viscoelastic fluids
  57. Local well-posedness for the two-component Benjamin-Ono equation
  58. Self-similar blow-up solutions of the four-dimensional Schrödinger-Wave system
  59. Existence and stability of traveling waves in a Keller-Segel system with nonlinear stimulation
  60. Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
  61. On the global large regular solutions of the 1D degenerate compressible Navier-Stokes equations
  62. Normal forms of piecewise-smooth monodromic systems
  63. Fractional Dirichlet problems with singular and non-locally convective reaction
  64. Sharp forced waves of degenerate diffusion equations in shifting environments
  65. Global boundedness and stability of a quasilinear two-species chemotaxis-competition model with nonlinear sensitivities
  66. Non-existence, radial symmetry, monotonicity, and Liouville theorem of master equations with fractional p-Laplacian
  67. Global existence, asymptotic behavior, and finite time blow up of solutions for a class of generalized thermoelastic system with p-Laplacian
  68. Formation of singularities for a linearly degenerate hyperbolic system arising in magnetohydrodynamics
  69. Linear stability and bifurcation analysis for a free boundary problem arising in a double-layered tumor model
  70. Hopf's lemma, asymptotic radial symmetry, and monotonicity of solutions to the logarithmic Laplacian parabolic system
  71. Generalized quasi-linear fractional Wentzell problems
  72. Existence, symmetry, and regularity of ground states of a nonlinear Choquard equation in the hyperbolic space
  73. Normalized solutions for NLS equations with general nonlinearity on compact metric graphs
  74. Boundedness and global stability in a predator-prey chemotaxis system with indirect pursuit-evasion interaction and nonlocal kinetics
  75. Review Article
  76. Existence and stability of contact discontinuities to piston problems
Downloaded on 29.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/anona-2025-0096/html
Scroll to top button