Startseite DNA-Plasmids of HIV-1 Induce Systemic and Mucosal Immune Responses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

DNA-Plasmids of HIV-1 Induce Systemic and Mucosal Immune Responses

  • Y. Asakura , P. Lundholm , A. Kjerrström , R. Benthin , E. Lucht , J. Fukushima , S. Schwartz , K. Okuda , B. Wahren und J. Hinkula
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 380 Heft 3

Abstract

DNA-based immunization has been shown to induce protective immunity against several microbial pathogens including HIV-1. Several routes of DNA vaccination have been exploited. However, the properties of the immune responses seem to differ with the different routes used for DNA delivery, ultimately affecting the outcome of experimental challenge. We measured the primary immune response following one vaccination. This report presents differences associated with three different DNA delivery routes: intramuscular injection, intranasal application, and gene-gun based immunization. Induction of systemic humoral immune responses was achieved most efficiently by either intranasal or gene-gun mediated immunization, followed by intramuscular injection. Mucosal IgA was reproducibly induced by intranasal instillation of the DNA, and found in lung washings, faeces, and vaginal washings. Cytotoxic T cells were not induced by a single immunization, but were observed after three immunizations using intramuscular injections.

:
Published Online: 2005-06-01
Published in Print: 1999-03-01

Copyright © 1999 by Walter de Gruyter GmbH & Co. KG

Artikel in diesem Heft

  1. Chimeric Virus-Like Particles as Vaccines
  2. The Core Antigen of Hepatitis B Virus as a Carrier for Immunogenic Peptides
  3. Enhancing the Immunogenicity of Exogenous Hepatitis B Surface Antigen-Based Vaccines for MHC-I-Restricted T Cells
  4. The Role of the Proteasome System and the Proteasome Activator PA28 Complex in the Cellular Immune Response
  5. Ty Virus-Like Particles, DNA Vaccines and Modified Vaccinia Virus Ankara; Comparisons and Combinations
  6. Chaperones Involved in Hepatitis B Virus Morphogenesis
  7. Behavior of a Short preS1 Epitope on the Surface of Hepatitis B Core Particles
  8. HBV Core Particles Allow the Insertion and Surface Exposure of the Entire Potentially Protective Region of Puumala Hantavirus Nucleocapsid Protein
  9. Induction of HPV16 Capsid Protein-Specific Human T Cell Responses by Virus-Like Particles
  10. Construction and Characterization of Recombinant VLPs and Semliki-Forest Virus Live Vectors for Comparative Evaluation in the SHIV Monkey Model
  11. Development of HIV/AIDS Vaccine Using Chimeric gag-env Virus-Like Particles
  12. A Disulfide-Bound HIV-1 V3 Loop Sequence on the Surface of Human Rhinovirus 14 Induces Neutralizing Responses against HIV-1
  13. DNA-Plasmids of HIV-1 Induce Systemic and Mucosal Immune Responses
  14. Yeast Cells Allow High-Level Expression and Formation of Polyomavirus-Like Particles
  15. Position-Dependent Processing of Peptides Presented on the Surface of Cowpea Mosaic Virus
  16. Protection of Baculovirus-Vectors against Complement-Mediated Inactivation by Recombinant Soluble Complement Receptor Type 1
  17. Site-Specific Fluorescence Labelling of Recombinant Polyomavirus-Like Particles
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.1999.049/html
Button zum nach oben scrollen