Startseite Construction and Characterization of Recombinant VLPs and Semliki-Forest Virus Live Vectors for Comparative Evaluation in the SHIV Monkey Model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Construction and Characterization of Recombinant VLPs and Semliki-Forest Virus Live Vectors for Comparative Evaluation in the SHIV Monkey Model

  • F. Notka , C. Stahl-Hennig , U. Dittmer , H. Wolf und R. Wagner
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 380 Heft 3

Abstract

For testing of recombinant virus-like particles (VLPs) in the SHIV monkey model, Sivmac239 Pr56gag precursor- based pseudovirions were modified by HIV-1 gp160 derived peptides. First, well-characterized epitopes from the HIV-1 envelope glycoprotein were inserted into the Pr56gag precursor by replacing defined regions that were shown to be dispensable for virus particle formation. Expression of these chimeric proteins in a baculovirus expression system resulted in efficient assembly and release of non-infectious, hybrid VLPs. In a second approach the HIV-1IIIB external glycoprotein gp120 was covalently linked to an Epstein-Barr virus derived transmembrane domain. Coexpression of the hybrid envelope derivative with the Pr56gag precursor yielded recombinant SIV derived Pr56gag particles with the HIV-1 gp120 firmly anchored on the VLP surface. Immunization of rhesus monkeys with either naked VLPs or VLPs adsorbed to alum induced substantial serum antibody titers and promoted both T helper cell and cytotoxic T lymphocyte responses. Furthermore, priming macaques with the corresponding set of recombinant Semliki-Forest viruses tended to enhance the immunological outcome. Challenge of the immunized monkeys with chimeric SHIV resulted in a clearly accelerated reduction of the plasma viremia as compared to control animals.

:
Published Online: 2005-06-01
Published in Print: 1999-03-01

Copyright © 1999 by Walter de Gruyter GmbH & Co. KG

Artikel in diesem Heft

  1. Chimeric Virus-Like Particles as Vaccines
  2. The Core Antigen of Hepatitis B Virus as a Carrier for Immunogenic Peptides
  3. Enhancing the Immunogenicity of Exogenous Hepatitis B Surface Antigen-Based Vaccines for MHC-I-Restricted T Cells
  4. The Role of the Proteasome System and the Proteasome Activator PA28 Complex in the Cellular Immune Response
  5. Ty Virus-Like Particles, DNA Vaccines and Modified Vaccinia Virus Ankara; Comparisons and Combinations
  6. Chaperones Involved in Hepatitis B Virus Morphogenesis
  7. Behavior of a Short preS1 Epitope on the Surface of Hepatitis B Core Particles
  8. HBV Core Particles Allow the Insertion and Surface Exposure of the Entire Potentially Protective Region of Puumala Hantavirus Nucleocapsid Protein
  9. Induction of HPV16 Capsid Protein-Specific Human T Cell Responses by Virus-Like Particles
  10. Construction and Characterization of Recombinant VLPs and Semliki-Forest Virus Live Vectors for Comparative Evaluation in the SHIV Monkey Model
  11. Development of HIV/AIDS Vaccine Using Chimeric gag-env Virus-Like Particles
  12. A Disulfide-Bound HIV-1 V3 Loop Sequence on the Surface of Human Rhinovirus 14 Induces Neutralizing Responses against HIV-1
  13. DNA-Plasmids of HIV-1 Induce Systemic and Mucosal Immune Responses
  14. Yeast Cells Allow High-Level Expression and Formation of Polyomavirus-Like Particles
  15. Position-Dependent Processing of Peptides Presented on the Surface of Cowpea Mosaic Virus
  16. Protection of Baculovirus-Vectors against Complement-Mediated Inactivation by Recombinant Soluble Complement Receptor Type 1
  17. Site-Specific Fluorescence Labelling of Recombinant Polyomavirus-Like Particles
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.1999.046/html
Button zum nach oben scrollen