Home Gaussian filtering algorithm describing the topography of temper rolled strip and related edge effect
Article
Licensed
Unlicensed Requires Authentication

Gaussian filtering algorithm describing the topography of temper rolled strip and related edge effect

  • Chunyu Xia , Hongbo Li , Jie Zhang , Xin Zhang and Shenghui Jia
Published/Copyright: December 28, 2017
Become an author with De Gruyter Brill

Abstract

The surface topography of temper rolled strip consists of a range of spatial wavelengths with approximate normal distribution in height. Gaussian filtering methods can be applied in measuring and characterizing the topography of temper rolled strip. In this study, three Gaussian filtering algorithms, namely convolution algorithm, fast Fourier transform algorithm and fast recursive algorithm, are compared, in order to find out the most suitable one for the topography of temper rolled strip. A similar profile extension method based on the distribution of the topography of strip is proposed to eliminate the edge effect. The results show that the convolution algorithm is obviously beneficial for the computational efficiency. It is also found that the similar profile extension method can effectively eliminate the edge effect and improve the reliability of edge data. The Gaussian convolution algorithm, combined with the similar profile extension method, is able to effectively assess the surface topography of temper rolled strip.

Kurzfassung

Die Oberflächentopographie von Warmwalzband besteht aus einem Bereich von räumlichen Wellenlängen mit einer annähernden Normalverteilung in der Höhe. Um die Topographie von Warmwalzband zu messen und zu charakterisieren, können Gauß-Filterverfahren angewandt werden. In der diesem Beitrag zugrunde liegenden Studie wurden drei Gauß-Filteralgorithmen, und zwar ein Faltungsalgorithmus, ein Fast-Fourier-Transformation-Algorithmus und ein schneller Rekursionsalgorithmus, verglichen, um den für die Topographie von Warmwalzband am besten geeigneten zu finden. Basierend auf der Topographieverteilung des Bandes wird ein ähnliches Profilausbreitungsverfahren eingesetzt, um den Kanteneffekt zu eliminieren. Die Ergebnisse zeigen, dass der Faltungsalgorithmus offensichtliche Vorteile bezüglich der Berechnungseffizienz hat. Es wurde auch ermittelt, dass das ähnliche Profilausbreitungsverfahren den Kanteneffekt effektiv eliminieren kann und die Zuverlässigkeit der Kantenwerte verbessern kann. Der Gauß-Faltungsalgorithmus, kombiniert mit dem ähnlichen Profilausbreitungsverfahren, ist in der Lage die Oberflächentopographie von Warmwalzband sinnvoll abzuschätzen.


*Correspondence Address, Associate Prof. Dr. Hongbo Li, School of Mechanical Engineering, University of Science and Technology Beijing, 30 Xueyuan Rd, Haidian, Beijing, 100083, P. R. China, E-Mail:

Chunyu Xia, born in 1987, is a doctoral candidate at University of Science and Technology Beijing, China. His study focuses on surface quality control for work rolls and steel strips during cold rolling.

Assoc. Prof. Dr. Hongbo Li, born in 1982, studied mechanical behavior and shape control of strip rolling technologies and completed his PhD at University of Science and Technology Beijing, China, where he is currently employed as Associate Professor.

Prof. Dr. Jie Zhang, born in 1960, is currently Professor and doctoral supervisor for Mechanical Engineering at University of Science and Technology Beijing, China. He earned his PhD at the School of Mechanical Engineering in University of Science and Technology Beijing in 1991. His research interests mainly focus on the metal plastic forming, rolling technology and automation and the mechanical behavior of metallurgical machinery.

Xin Zhang, born in 1993, is a master candidate at University of Science and Technology Beijing, China. Her primary research area is roll wear.

Dr. Shenghui Jia, born in 1968, obtained his PhD at the School of Mechanical Engineering at University of Science and Technology Beijing, China. Currently, he is employed at Wuhan Iron & Steel (Group) Corporation, Wuhan, China.


References

1 D.Wiklund, A.Wihlborg, B. G.Rosén: Evaluation of surface topography parameters for friction prediction in stamping, Wear257 (2004), No. 12, pp. 1296130010.1016/j.wear.2004.05.026Search in Google Scholar

2 B.Runje, M.Marković, I.Stojanović, S.Jakovljević, Ž.Alar: Coating distribution depending on surface microgeometry, Materials Testing55 (2013), No. 5 pp. 34534810.3139/120.110443Search in Google Scholar

3 K. J.Stout: Development of methods for the characterisation of roughness in three dimensions, Butterworth-Heinemann, Oxford, UK (2000)Search in Google Scholar

4 P.Dobrzański, P.Pawlus: Modification of robust filtering of stratified surface topography, Metrology and Measurement Systems20 (2013), No. 1, pp. 10711810.2478/mms-2013-0010Search in Google Scholar

5 D.Janecki, L.Cedro, J.Zwierzchowski: Separation of non-periodic and periodic 2D profile features using b-spline functions, Metrology and Measurement Systems22 (2015), No. 2, pp. 28930210.1515/mms-2015-0016Search in Google Scholar

6 M. M.Padzi, S.Abdullah, M. Z.Nuawi: Assessment of fatigue behaviour under different loading sequences using signal analysis approaches, Materials Testing55 (2013), No. 3, pp. 16817810.3139/120.110421Search in Google Scholar

7 J.Raja, B.Muralikrishnan, S.Fu: Recent advances in separation of roughness, waviness and form, Precision Engineering26 (2002), No. 2, pp. 22223310.1016/S0141-6359(02)00103-4Search in Google Scholar

8 P.Dobrzanski, P.Pawlus: Digital filtering of surface topography: Part I – Separation of one-process surface roughness and waviness by Gaussian convolution, Gaussian regression and spline filters, Precision Engineering34 (2010), No. 3, pp. 64765010.1016/j.precisioneng.2009.12.001Search in Google Scholar

9 T.Miller, A.Łętocha, K.Gajda: Influence of different filtration methods application on a filtered surface profile and roughness parameters, Key Engineering Materials637 (2015), pp. 576810.4028/www.scientific.net/KEM.637.57Search in Google Scholar

10 G.Le Goïc, M.Bigerelle, S.Samper, H.Favrelière, M.Pillet: Multiscale roughness analysis of engineering surfaces: A comparison of methods for the investigation of functional correlations, Mechanical Systems and Signal Processing66 (2016), pp. 43745710.1016/j.ymssp.2015.05.029Search in Google Scholar

11 Y. S.Choi, H. R.Piehler, A. D.Rollett: Introduction and application of modified surface roughness parameters based on the topographical distributions of peaks and valleys, Materials Characterization58 (2007), No. 10, pp. 90190810.1016/j.matchar.2006.09.003Search in Google Scholar

12 DIN EN ISO 11562: Geometrical Product Specification (GPS) – Surface Texture: Profile Method-Metrological Characteristics of Phase Correct Filters, British Standards Institute, London (1996)Search in Google Scholar

13 M.Krystek: A fast Gauss filtering algorithm for roughness measurements, Precision Engineering19 (1996), No. 2, pp. 19820010.1016/S0141-6359(96)00025-6Search in Google Scholar

14 Y. B.Yuan, X. F.Qiang, J. F.Song, T. V.Vorburger: A fast algorithm for determining the Gaussian filtered mean line in surface metrology, Precision Engineering24 (2000), No. 1, pp. 626910.1016/S0141-6359(99)00031-8Search in Google Scholar

15 J. B.Xu, Y. B.Yuan: A fast algorithm of Gaussian filtering for three-dimensional surface topography, Proc. of SPIE6041 (2005), pp. 60411C1-7 10.1117/12.664330Search in Google Scholar

16 K. S.Friis, A.Godi, L.de Chiffre: Characterization and robust filtering of multifunctional surfaces using ISO standards, Measurement Science and Technology22 (2011), No. 12, pp. 12510112510810.1088/0957-0233/22/12/125101Search in Google Scholar

17 S.Lou, W. H.Zeng, X. Q.Jiang, P. J.Scott: Robust filtration techniques in geometrical metrology and their comparison, International Journal of Automation and Computing10 (2013), No. 1, pp. 1810.1007/s11633-013-0690-4Search in Google Scholar

18 Y.Kondo, M.Numada, H.Koshimizu: A robust Gaussian filter corresponding to the transmisson characterisic of the Gaussian filter, Journal of Physics: Conference Series483 (2014), No. 1, pp. 5132513710.1088/1742-6596/483/1/012016Search in Google Scholar

19 H.Zhang, Y. B.Yuan: A new approach for Gaussian filter in surface metrology, Intelligent Systems and Applications (2009), pp. 1510.1109/IWISA.2009.5072643Search in Google Scholar

20 D.Janecki: Gaussian filters with profile extrapolation, Precision Engineering35 (2011), No. 4, pp. 60260610.1016/j.precisioneng.2011.04.003Search in Google Scholar

21 D.Janecki: Edge effect elimination in the recursive implementation of Gaussian filters, Precision Engineering36 (2012), No. 1, pp. 12813610.1016/j.precisioneng.2011.08.001Search in Google Scholar

22 S.Nammi, B.Ramamoorthy: Effect of surface lay in the surface roughness evaluation using machine vision, Optik – International Journal for Light and Electron Optics125 (2014), No. 15, pp. 3954396010.1016/j.ijleo.2014.01.152Search in Google Scholar

23 J.Seewig, M.Eifler: Periodic Gaussian filter according to ISO 16610-21 for closed profiles, Precision Engineering38 (2014), No. 2, pp. 43944210.1016/j.precisioneng.2013.09.004Search in Google Scholar

24 J.Zhang, H.Zhang: Fast Gaussian filtering algorithm for 3D surface measurement, Tool Engineering45 (2011), No. 9, pp. 838610.16567/j.cnki.1000-7008.2011.09.022Search in Google Scholar

25 BS EN ISO 16610-21: Geometrical product specifications (GPS) — Filtration, Linear Profile Filters: Gaussian Filters, Part 21, The British Standards Institution, UK (2015)Search in Google Scholar

26 N. L.Luo, P. J.Sullivan, K. J.Stout: Gaussian filtering of three-dimensional engineering surface topography, Measurement Technology and Intelligent Instruments (1993), pp. 52753810.1117/12.156497Search in Google Scholar

Published Online: 2017-12-28
Published in Print: 2018-01-04

© 2018, Carl Hanser Verlag, München

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111118/html
Scroll to top button