Home Experimental evaluation of optimum process parameters for spinning of metals
Article
Licensed
Unlicensed Requires Authentication

Experimental evaluation of optimum process parameters for spinning of metals

  • Ahmet Feyzioglu
Published/Copyright: December 28, 2017
Become an author with De Gruyter Brill

Abstract

During the shear forming process, precision, repeatability and reproducibility are significant factors to be considered while rotating the workpiece to shape it in the form of the mandrel. Final thickness of the material is dependent on the initial thickness and mandrel angle. The projected area of the final product is nearly equal to the area of the initial workpiece. On the other hand, high feed ratios may lead to cracking and low feed ratios reduce the workability and thickness of the material by causing overexpansion of the material in the radial direction. As the spinning ratio increases, the process becomes difficult. If the process is not carried out cautiously, some defects, such as wrinkling, tearing or cracking, may occur in the spun part. These are caused by applying unacceptable feeds and rpms to the material and diameter. Problems such as wrinkling, tearing or cracking can be addressed by applying the optimum rpm and velocity values with respect to the material being worked on. Several methods have been used to predict the behavior of the material during spinning. For example, during shear spinning, the surface roughness and required force can be determined by regression analysis. In this study, the correlation among optimum rpm, velocity, mandrel angle, and the initial and final thicknesses of metals during shear formation was evaluated.

Kurzfassung

Während des Scherverformungsprozesses sind die Präzision, die Wiederholbarkeit und Reproduzierbarkeit signifikante Faktoren, die berücksichtigt werden müssen, wenn das Werkstück rotiert wird, um es in die Form der Matrize zu bringen. Die Enddicke des Werkstückes ist dabei abhängig von der Ausgangsdicke und dem Matrizenwinkel. Die Projektionsfläche des Endproduktes ist nahezu gleich zu dem Ausgangswerkstück. Andererseits können hohe Vorschubraten zur Rissbildung führen und niedrige Vorschubraten reduzieren die Bearbeitbarkeit und die Dicke des Werkstoffes, indem sie eine übermäßige Ausdehnung des Werkstoffes in radialer Richtung verursachen. Wenn der Verformungsgrad zunimmt, wird der Prozess schwierig. Wenn der Prozess nicht vorsichtig durchgeführt wird, können einige Defekte auftreten, wie zum Beispiel Faltenbildung, Verzerrung oder Rissbildung in dem verformten Teil auftreten. Diese werden durch die Anwendung inakzeptabler Vorschubraten und Umdrehungsgeschwindigkeiten bezüglich des Werkstoffes und des entsprechenden Durchmessers verursacht. Schwierigkeiten, wie zum Beispiel Faltenbildung, Verzerrungen oder Rissbildungen können umgangen werden, indem optimale Umdrehungsgeschwindigkeiten und Vorschubraten in Bezug auf den zu bearbeitenden Werkstoff gewählt werden. Verschiedene Verfahren wurden entwickelt, um das Werkstoffverhalten während der Scherverformung vorherzusagen. So können zum Beispiel bei der Scherverformung die Oberflächenrauheit und die benötigte Kraft mittels Regressionsanalysen bestimmt werden. In der diesem Beitrag zugrunde liegenden Studie wurde die Korrelation zwischen der optimalen Umdrehungsgeschwindigkeit, der Vorschubrate, des Matrizenwinkels und der Anfangs- bzw. der Enddicke von Metallen während der Scherverformung evaluiert.


*Correspondence Address, Dr. Ahmet Feyzioglu, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey, E-mail:

Dr. Ahmet Feyzioglu, born in 1980, completed his PhD at Marmara University, Istanbul, Turkey, in 2003 and conducted his postdoctoral studies at the University of Manchester, Manchester Institute of Innovation Research, UK, in 2012. Since 2013, he has been working in the Mechanical Engineering Department of Marmara University.


References

1 H.Arai: Force-controlled metal spinning machine using linear motors, Proc. of the IEEE International Conference on Robotics and Automation, Orlando, USA (2006), pp. 40314036Search in Google Scholar

2 C.Wong, T.Dean, J.Lin: A review of spinning, shear forming and flow forming processes, International Journal of Machine Tools and Manufacture43 (2003), No. 14, pp. 1419143510.1016/s0890-6955(03)00172-xSearch in Google Scholar

3 P.Eyckens, A.van Bael, P.van Houtte: Marciniak–Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal, International Journal of Plasticity25 (2009), No. 12, pp. 2249226810.1016/j.ijplas.2009.02.002Search in Google Scholar

4 Y.Li, M.Luo, J.Gerlach, T.Wierzbicki: Prediction of shear-induced fracture in sheet metal forming, Journal of Materials Processing Technology210 (2010), No. 14, pp. 1858186910.1016/j.jmatprotec.2010.06.021Search in Google Scholar

5 W.Emmens, A.van den Boogaard: Strain in shear, and material behaviour in incremental forming, KEM344 (2007), pp. 51952610.4028/www.scientific.net/kem.344.519Search in Google Scholar

6 H.Molladavoudi, F.Djavanroodi: Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-O, during flow forming, The International Journal of Advanced Manufacturing Technology52 (2010) No. 9–12, pp. 94995710.1007/s00170-010-2782-4Search in Google Scholar

7 M.Chen, R.Hsu, K.Fuh: Forecast of shear spinning force and surface roughness of spun cones by employing regression analysis, International Journal of Machine Tools and Manufacture41 (2001), No. 12, pp. 1721173410.1016/s0890-6955(01)00039-6Search in Google Scholar

8 K.Jackson, J.Allwood: The mechanics of incremental sheet forming, Journal of Materials Processing Technology209 (2009), No. 3, pp. 1158117410.1016/j.jmatprotec.2008.03.025Search in Google Scholar

9 M.Jahazi, G.Ebrahimi: The influence of flow-forming parameters and microstructure on the quality of a D6ac steel, Journal of Materials Processing Technology103 (2000), No. 3, pp. 36236610.1016/s0924-0136(00)00508-2Search in Google Scholar

Published Online: 2017-12-28
Published in Print: 2018-01-04

© 2018, Carl Hanser Verlag, München

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111112/html
Scroll to top button