Impression creep behavior of magnesium alloy ZK60
-
Huimin Liao
Abstract
Creep behavior of the ZK60 magnesium alloy was investigated using impression creep technique. The tests were carried out under constant punching stress at high temperatures (175, 200 and 225 °C) under low stresses (25, 50, 75 and 100 MPa) and at low temperatures (100, 125 and 150 °C) under high stresses (100, 125, 150 and 175 MPa). The creep mechanism of the extruded ZK60 magnesium alloy is grain boundary sliding by dislocation climbing obtained at low temperature and high pressure. At high temperature and under low pressure, the creep mechanism of the extruded ZK60 magnesium alloy is grain boundary diffusion by grain boundary sliding. The initial microstructure of the extruded ZK60 magnesium alloy was composed of mainly Mg phase and a little MgZn phase. Under the conditions of low temperature and high pressure, MgZn2 phase precipitated during creep deformation. Under the conditions of high temperature and low pressure, MgZn2 phase and a small amount of Zr-Zn phase precipitated during creep deformation. The creep resistance of magnesium alloy ZK60 under the conditions of low temperature and high pressure is better than under the conditions of high temperature and low pressure.
Kurzfassung
Das Kriechverhalten der Magnesiumlegierung ZK60 wurde unter Druckbeanspruchung untersucht. Die Versuche wurden unter konstanter Stanzspannung bei hohen Temperaturen (175, 200 und 225 °C) unter niedrigen Spannungen (25, 50, 75 und 100 MPa) sowie bei niedrigen Temperaturen (100, 125 und 150 °C) unter hohen Spannungen (100, 125, 150 und 175 MPa) durchgeführt. Der Kriechmechanismus der stranggepressten Magnesiumlegierung ZK60 besteht im Korngrenzengleiten infolge Versetzungskletterns bei niedriger Temperatur und hohem Druck. Der Kriechmechanismus der stranggepressten Magnesiumlegierung ZK60 besteht in der Korngrenzendiffusion infolge Versetzungsgleitens bei hoher Temperatur und niedrigem Druck. Die ursprüngliche Mikrostruktur der stranggepressten Magnesiumlegierung ZK60 besteht hauptsächlich aus der Mg-Phase und zu einem geringen Anteil aus der MgZn-Phase. Unter den Bedingungen niedriger Temperatur und hohem Druck schied sich MgZn2 während der Kriechdeformation aus. Dagegen wurde unter den Bedingungen hoher Temperatur und niedrigem Druck MgZn2 und eine kleine Menge der Phase Zr-Zn während der Kriechdeformation ausgeschieden. Die Kriechfestigkeit der Magnesiumlegierung ZK60 ist bei niedriger Temperatur und hohem Druck besser, als bei hoher Temperatur und niedrigem Druck.
References
1 Z.Trojanová, P.Lukáč: Compressive deformation behaviour of magnesium alloys, Journal of Materials Processing Technology162–163 (2005), pp. 416–42110.1016/j.jmatprotec.2005.02.024Search in Google Scholar
2 P.Gunde, A. C.Hänzi, A. S.Sologubenko, P. J.Uggowitzer: High-strength magnesium alloys for degradable implant applications, Materials Science & Engineering A528 (2011), No. 3, pp. 1047–105410.1016/j.msea.2010.09.068Search in Google Scholar
3 S. Q.Zhu, H. G.Yan, X. Z.Liao, S. J.Moody, G.Sha, Y. Z.Wu, S. P.Ringer: Mechanisms for enhanced plasticity in magnesium, Acta Materialia82 (2015), pp. 344–35510.1016/j.actamat.2014.09.006Search in Google Scholar
4 Y.Ali, D.Qiu, B.Jiang, F.Pan, M. X.Zhang: Current research progress in grain refinement of cast magnesium alloys, Journal of Alloys & Compounds619 (2015), pp. 639–65110.1016/j.jallcom.2014.09.061Search in Google Scholar
5 N.Stanford, M.Barnett: Effect of composition on the texture and deformation behaviour of wrought Mg alloys, Scripta Materialia58 (2008), No. 3, pp. 179–18210.1016/j.scriptamat.2007.09.054Search in Google Scholar
6 N.Tahreen, D. F.Zhang, F. S.Pan, X. Q.Jiang, D. Y.Li, D. L.Chen: Texture evolution and deformation activity of an extruded magnesium alloy: Effect of yttrium and deformation temperature, Journal of Alloys and Compounds688 (2016), No. 15, pp. 270–28410.1016/j.jallcom.2016.07.150Search in Google Scholar
7 A.Vinogradov, D.Orlov, A.Danyuk, Y.Estrin: Effect of grain size on the mechanisms of plastic deformation in wrought Mg-Zn-Zr alloy revealed by acoustic emission measurements, Acta Materialia61 (2013), No. 6, pp. 2044–205610.1016/j.actamat.2012.12.024Search in Google Scholar
8 J.Chen, L.Tan, K.Yang: Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy, Bioactive Materials2 (2017), pp. 19–2610.1016/j.bioactmat.2016.12.002Search in Google Scholar
9 M.Krystian, M. J.Zehetbauer, H.Kropika, B.Mingler, G.Krexner: Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing, Journal of Alloys and Compounds509S (2011), pp. S449–S45510.1016/j.jallcom.2011.01.029Search in Google Scholar
10 W.Yang, X.Guo, K.Yang: Low temperature quasi-superplasticity of ZK60 alloy prepared by reciprocating extrusion, Transactions of Nonferrous Metals Society of China, 22 (2012), pp. 255–26110.1016/S1003-6326(11)61168-0Search in Google Scholar
11 A.Müller, G.Garces, P.Perez, P.Adeva: Grain refinement of Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase by severe hot rolling, Journal of Alloys and Compounds443 (2007), pp. L1–L510.1016/j.jallcom.2006.10.006Search in Google Scholar
12 Y.Wu, H.Yan, S.Zhu, J.Chen, A.Liu, X.Liu: Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate, Transactions of Nonferrous Metals Society of China24 (2014), pp. 930–93910.1016/S1003-6326(14)63145-9Search in Google Scholar
13 D. H.Sastry: Impression creep technique – An overview, Materials Science and Engineering A409 (2005), pp. 67–7510.1016/j.msea.2005.05.110Search in Google Scholar
14 F.Yang, C. M.Li James: Impression test – A review, Materials Science and Engineering: R: Reports74 (2013), No. 8, pp. 233–25310.1016/j.mser.2013.06.002Search in Google Scholar
15 R.Mahmudi, A. R.Geranmayeh, A.Rezaee-Bazzaz: Impression creep behavior of lead-free Sn-5Sb solder alloy, Materials Science and Engineering A448 (2007), pp. 287–29310.1016/j.msea.2006.10.092Search in Google Scholar
16 D.Dorner, K.Roller, B.Skrotzki, B.Stockhert, G.Eggler: Creep of a TiAl alloy: A comparison of indentation and tensile testing, Materials Science and Engineering A257 (2003), pp. 346–35410.1016/S0921-5093(03)00205-3Search in Google Scholar
17 P. M.Sargent, M. F.Ashby: Indentation creep, Mater. Sci. Technol.8 (1992), pp. 594–60110.1179/mst.1992.8.7.594Search in Google Scholar
18 R.Mahmudi, A. R.Geranmayeh, A.Rezaee-Bazzaz: Impression creep behavior of cast Pb-Sb alloys, Journal of Alloys and Compounds427 (2007), pp. 124–12910.1016/j.jallcom.2006.02.053Search in Google Scholar
19 M. S.Dargusch, G. L.Dunlop: Elevated temperature creep and microstructure of die cast Mg-Al alloys, Magnesium Alloys and Their Application20 (1998), pp. 276–281Search in Google Scholar
20 Y.Zhang, M.Zeng, P.Guo, C.Liao, B.Shen: Indentation creep resistance of AE42 alloy, The Chinese Journal of Nonferrous Metals19 (2009), No. 7, pp. 1169–1175Search in Google Scholar
21 B.Nami, H.Razavi, S.Mirdamadi, S. G.Shabestari, S. M.Miresmaeili: Effect of Ca and rare earth elements on impression creep properties of AZ91 magnesium alloy, Metallurgical and Materials Transactions A41 (2010), pp. 1973–198310.1007/s11661-010-0238-ySearch in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Vorwort/Editorial
- Looking ahead after 60 successful years
- Fachbeiträge/Technical Contributions
- Deterioration mechanisms of materials – Influences on performance and reliability
- Corrosion fatigue assessment of extruded magnesium alloys AZ31 and ME20
- Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal
- Effect of Cr content on microstructure and mechanical properties of carbidic austempered ductile iron
- Optimization of welding parameters for DP600/TRIP800 dissimilar joints
- Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion
- Fatigue behavior and mechanism of KMN in a very high cycle regime
- Gaussian filtering algorithm describing the topography of temper rolled strip and related edge effect
- Impression creep behavior of magnesium alloy ZK60
- Rauheitsanforderungen für die mobile Härteprüfung metallischer Werkstoffe
- Preparation and characterization of Kevlar/glass fiber laminates with a nanoclay enhanced epoxy matrix
- Effect of seawater on pin-loaded laminated composites
- Thermomechanical and acidic treatments to improve plasticization and properties of chitosan films: A comparative study of acid types and glycerol effects
- Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity
- Experimental evaluation of optimum process parameters for spinning of metals
Articles in the same Issue
- Inhalt/Contents
- Contents
- Vorwort/Editorial
- Looking ahead after 60 successful years
- Fachbeiträge/Technical Contributions
- Deterioration mechanisms of materials – Influences on performance and reliability
- Corrosion fatigue assessment of extruded magnesium alloys AZ31 and ME20
- Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal
- Effect of Cr content on microstructure and mechanical properties of carbidic austempered ductile iron
- Optimization of welding parameters for DP600/TRIP800 dissimilar joints
- Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion
- Fatigue behavior and mechanism of KMN in a very high cycle regime
- Gaussian filtering algorithm describing the topography of temper rolled strip and related edge effect
- Impression creep behavior of magnesium alloy ZK60
- Rauheitsanforderungen für die mobile Härteprüfung metallischer Werkstoffe
- Preparation and characterization of Kevlar/glass fiber laminates with a nanoclay enhanced epoxy matrix
- Effect of seawater on pin-loaded laminated composites
- Thermomechanical and acidic treatments to improve plasticization and properties of chitosan films: A comparative study of acid types and glycerol effects
- Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity
- Experimental evaluation of optimum process parameters for spinning of metals