Home Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
Article
Licensed
Unlicensed Requires Authentication

Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine

  • Bahareh Vafakish
Published/Copyright: May 8, 2017
Become an author with De Gruyter Brill

Abstract

In recent times, long chain amido sulfobetaine surfactants are a very attractive subject, but their unique self assembly properties as well as the rheological behavior of the mixture of these surfactants with other surfactant types are less documented. In this paper, the rheological behavior of the erucyl amido sulfobetaine (EASB) in mixture with long chain cationic surfactants was evaluated. The results indicated that in spent acid solution, the rheological responses of erucyl amido sulfobetaine (EASB) in the presence of cationic surfactants were improved. The effect of surfactants concentration and temperature were also studied.

Kurzfassung

In jüngster Zeit sind langkettige Amidosulfobetain-Tenside ein sehr attraktives Forschungsfeld, aber ihre einzigartigen Selbstorganisationseigenschaften sowie das rheologische Verhalten von Mischungen dieser Tenside mit anderen Tensidklassen sind weniger dokumentiert. In dieser Arbeit wurde das rheologische Verhalten vom Mischungen aus Erucylamidosulfobetain (EASB) und langkettigen kationischen Tensiden untersucht. Die Ergebnisse zeigten, dass in der verbrauchten Säurelösung die rheologischen Eigenschaften von Erucylamidosulfobetain (EASB) in Gegenwart von kationischen Tensiden verbessert wurden. Der Einfluss der Tensidkonzentration und Temperatur wurde ebenfalls untersucht.


*Correspondence address, Dr. Bahareh Vafakish, Assistant Professor, Chemical, Polymeric and Petrochemical Technology Development Research Division, Research Institute of Petroleum Industry, Dehkadeh Blvd., P.O. Box 14115-143, Tehran, Iran, Tel.: 98-21-48252419, Fax: 98-21-44739517, E-Mail:

References

1. Bluestein, B. R. and Hilton, C. L.: Amphoteric surfactants, Lomax, E. G., Marcel Dekker, New York (1996) 94105.Search in Google Scholar

2. Effendy, I. and Maibach, H. I.: Detergent and skin irritation. Clin. Dermatol.14 (1996) 1521. 10.1016/0738-081X(95)00103-MSearch in Google Scholar

3. Schramm, L. L., Stasiuk, E. N. and Marangoni, D. G.: Surfactants and their applications. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.99 (2003) 348. 10.1039/B208499FSearch in Google Scholar

4. Tadros, T. F.: Applied surfactants: principles and applications, John Wiley & Sons, (2006) 78.Search in Google Scholar

5. Lu, H., Zhang, X., Quan, H., Dai, S., Zhang, T. and Huang, Z.: An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties. Tenside Surfact. Det.49 (2012) 445450. 10.3139/113.110215Search in Google Scholar

6. Wang, Y., Zhang, Y., Liu, X., Wang, J., Wei, L. and Feng, Y.: Effect of a hydrophilic head group on krafft temperature, surface activities and rheological behaviors of erucyl amidobetaines. J. Surfactants Deterg.17 (2014) 295301. 10.1007/s11743-013-1496-7Search in Google Scholar

7. Feng, D., Zhang, Y., Chen, Q., Wang, J., Li, B. and Feng, Y.: Synthesis and surface activities of amidobetaine surfactants with ultra-long unsaturated hydrophobic chains. J. Surfactants Deterg.15 (2012) 657661. 10.1007/s11743-012-1359-7Search in Google Scholar

8. Chu, Z. and Feng, Y.: Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir28 (2011) 11751181. PMid:22149531; 10.1021/la204316gSearch in Google Scholar

9. Kelland, M. A.: Production chemicals for the oil and gas industry, CRC press, Taylor & Francis Group, New York (2014) 161165.Search in Google Scholar

10. Khan, A. and Marques, E. F.: Synergism and polymorphism in mixed surfactant systems. Curr. Opin. Colloid Interface Sci.4 (1999) 402410. 10.1016/S1359-0294(00)00017-0Search in Google Scholar

11. Holland, P. M. and Rubingh, D. N.: Mixed surfactant systems, Masahiko, A. and Scamehorn, J. F., CRC Press, Taylor & Francis Group, New York (2004) 99113.Search in Google Scholar

12. Danov, K., Kralchevska, S., Kralchevsky, P., Ananthapadmanabhan, K. and Lips, A.: Mixed solutions of anionic and zwitterionic surfactant (betaine): surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir20 (2004) 54455453. PMid:15986685; 10.1021/la049576iSearch in Google Scholar PubMed

13. Rosen, M. J.: Synergism in mixtures containing zwitterionic surfactants. Langmuir7 (1991) 885888. 10.1021/la00053a012Search in Google Scholar

14. Taylor, D., Kumar, P. S., Fu, D., Jemmali, M., Helou, H., Chang, F., Davies, S. and Al-Mutawa, M.: Viscoelastic surfactant based self-diverting acid for enhanced stimulation in carbonate reservoirs, SPE European Formation Damage Conference, Netherlands (2003). 10.2118/82263-MSSearch in Google Scholar

15. Malhotra, S. and Sharma, M. M.: Settling of spherical particles in unbounded and confined surfactant-based shear thinning viscoelastic fluids: An experimental study. Chem. Eng. Sci.84 (2012) 646655. 10.1016/j.ces.2012.09.010Search in Google Scholar

16. Yan, Z., Dai, C., Feng, H., Liu, Y. and Wang, S.: Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant. PloS one9 (2014) e110155. PMid:25296131; 10.1371/journal.pone.0110155Search in Google Scholar PubMed PubMed Central

17. Li, L. and Gadberry, J. F.: Synergistic Effect of Cosurfactants on the Rheological Performance of Drilling, Completion and Fracturing Fluids. Akzo Nobel Chemicals International B.V., US20160017210 A1 (2014).Search in Google Scholar

18. Adeyeye, M. C., Jain, A. C., Ghorab, M. K. and Reilly, W. J.: Viscoelastic evaluation of topical creams containing microcrystalline cellulose/sodium carboxymethyl cellulose as stabilizer. AAPS Pharm. Sci. Tech.3 (2002) 1625. PMid:12916945; 10.1208/pt030208Search in Google Scholar PubMed PubMed Central

19. Nakaya-Yaegashi, K., Ramos, L., Tabuteau, H. and Ligoure, C.: Linear viscoelasticity of entangled wormlike micelles bridged by telechelic polymers: an experimental model for a double transient network. J. Rheol.52 (2008) 359377. 10.1122/1.2828645Search in Google Scholar

20. Cates, M. and Candau, S.: Statics and dynamics of worm-like surfactant micelles. J. Phys.: Condens. Matter2 (1990) 6869. 10.1088/0953-8984/2/33/001Search in Google Scholar

21. Raghavan, S. R. and Kaler, E. W.: Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir17 (2001) 300306. 10.1021/la0007933Search in Google Scholar

Received: 2016-09-07
Accepted: 2016-12-12
Published Online: 2017-05-08
Published in Print: 2017-05-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110498/pdf
Scroll to top button