Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
-
Kai Xu
Abstract
This study focuses on the properties of mixed micelles of di-sodium salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic acid (symbolized as DLMC) in solution systems (DLMC/DTAB and DLMC/AEO6). The micro-polarity of the mixed micelles was determined by the fluorospectrophotometer. When the concentration is above CMC, the micellar micro-polarity and the aggregation number (Nm) of the mixed micelles were measured by a steady state fluorescence quenching method. The average hydrodynamic radius (Rh) of the mixed micelles was studied by means of dynamic light scattering. The results show that the micro-polarity of micelle nucleus decreases obviously with increasing concentration. The aggregation number of DLMC mixed systems is smaller than that of single surfactants. The difference of the proportion of the two surfactants has little effect on the aggregation number of mixed systems. It is easy to generate molecular aggregates with lower curvature from DLMC than the corresponding monomeric surfactant (DTAB), and DLMC can generate huge linear micelles at low concentrations when mixed with other surfactants.
Kurzfassung
Diese Studie konzentriert sich auf die Eigenschaften von Mischmizellen des Di-Natriumsalzes der 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionsäure (DLMC) in Lösungen (DLMC/DTAB und DLMC/AEO6). Die Mikropolarität der Mischmizellen wurde durch ein Fluorospektrophotometer bestimmt. Wenn die Konzentration über der CMC liegt, wurden die mizellare Mikropolarität und die Aggregationszahl (Nm) der Mischmizellen durch Fluoreszenzlöschverfahren im stationären Zustand gemessen. Der mittlere hydrodynamische mizellare Radius (Rh) der Mischmizellen wurde mittels dynamischer Lichtstreuung untersucht. Die Ergebnisse zeigen, dass die Mikropolarität des Mizellenkerns deutlich mit zunehmender Konzentration abnimmt. Die Aggregationszahl der DLMC-Mischsystemene ist kleiner als die der einzelnen Tenside. Die Differenz des Anteils der beiden Tenside hat wenig Einfluss auf die Aggregationszahl der Mischsysteme. Es ist leicht, molekulare Aggregate mit geringerer Krümmung aus DLMC zu erzeugen als aus dem entsprechenden monomeren Tensid DTAB. DLMC kann riesige lineare Mizellen bei geringen Konzentrationen erzeugen, wenn es mit anderen Tensiden gemischt ist.
References
1. Salako, O., Lo, C., Couzis, A., Somasundaran, P. and Lee, J. W.: Adsorption of gemini surfactants onto clathrate hydrates, Journal of Colloid and Interface Science412 (2013) 1–6. PMid:24144366; 10.1016/j.jcis.2013.09.007Suche in Google Scholar PubMed
2. Nguyen, C. V., Nguyen, T. V. and Phana, V. M.: Dynamic adsorption of a gemini surfactant at the airwater interface, Colloids and Surfaces A: Physicochemical and Engineering Aspects482 (2015) 365–370. 10.1016/j.colsurfa.2015.06.012Suche in Google Scholar
3. Tyagi, S. and Tyagi, V. K.: Interaction of anionic gemini surfactants with other surfactants, Journal of Dispersion Science and Technology35 (2014) 1308–1318. 10.1080/01932691.2013.833104Suche in Google Scholar
4. Łudzik, K., Piekarski, H., Kubalczyk, K. and Wasiak, M.: Micellization properties of cationic gemini surfactants in aqueous solution, Thermochimica Acta558 (2013) 29–35. 10.1016/j.tca.2013.01.016Suche in Google Scholar
5. Li, J. Y., Yang, P. F., Sha, Z. L., Li, T. D. and Liu, Y. M.: Synthesis and micellization of organosilicon gemini quaternary ammonium surfactants, J. Surfact. Deterg.18 (2015) 155–161. 10.1007/s11743-014-1629-7Suche in Google Scholar
6. Pei, X. M., Zhao, J. X. and Wei, X. L.: Wormlike micelles formed by mixed cationic and anionic gemini surfactants in aqueous solution, Journal of Colloid and Interface Science356 (2011) 176–181. PMid:21276973; 10.1016/j.jcis.2010.12.065Suche in Google Scholar PubMed
7. Verma, S. K. and Ghosh, K. K.: Micellar and surface properties of some monomeric surfactants and a gemini cationic surfactant, J. Surfact. Deterg.14 (2011) 347–352. 10.1007/s11743-010-1237-0Suche in Google Scholar
8. Cai, B., Li, X. F., Yang, Y. and Dong, J. F.: Surface properties of gemini surfactants with pyrrolidinium head groups, Journal of Colloid and Interface Science370 (2012) 111–116. PMid:22261268; 10.1016/j.jcis.2011.12.025Suche in Google Scholar PubMed
9. Lin, L. H., Wang, C. C., Chen, K. M. and Lin, P. C.: Synthesis and physicochemical properties of silicon-basedgemini surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects436 (2013) 881–889. 10.1016/j.colsurfa.2013.08.036Suche in Google Scholar
10. Pei, L. J., Cai, Z. S., Shang, S. B. and Song, Z. Q.: Synthesis and properties of a cationic gemini surfactant with the hydrophenanthrene structure, J. Surfact. Deterg.17 (2014) 433–439. 10.1007/s11743-014-1572-7Suche in Google Scholar
11. Xie, Z. F. and Feng, Y. J.: Synthesis and properties of alkylbetaine zwitterionic gemini surfactants, J. Surfact. Deterg.13 (2010) 51–57. 10.1007/s11743-009-1152-4Suche in Google Scholar
12. Li, X., Hu, Z. Y., Zhu, H. L., Zhao, S. F. and Cao, D. L.: Synthesis and properties of novel alkyl sulfonate gemini surfactants, J. Surfact. Deterg.13 (2010) 353–359. 10.1007/s11743-010-1188-5Suche in Google Scholar
13. Gotmukle, S. B. and Bhagwat, S. S.: Synthesis and surface activity of bisphosphate gemini surfactants, J. Surfact. Deterg.16 (2013) 63–70. 10.1007/s11743-012-1415-3Suche in Google Scholar
14. Ding, Z. Y. and Hao, A. Y.: Synthesis and surface properties of novel cationic gemini surfactants, Journal of Dispersion Science and Technology31 (2010) 338–342. 10.1080/01932690903192580Suche in Google Scholar
15. Zhang, Q., Tian, M. Z., Han, Y. H., Wu, C. X., Li, Z. B. and Wang, Y. L.: Synthesis, aggregation behavior and interfacial activity of branched alkylbenzenesulfonate gemini surfactants, Journal of Colloid and Interface Science362 (2011) 406–414. PMid:21764066; 10.1016/j.jcis.2011.05.087Suche in Google Scholar PubMed
16. Ye, Z. B., Han, L. J., Chen, H., Shi, L. T. and Luo, P. Y.: Effect of sodium salicylate on the properties of gemini surfactant solutions, J. Surfact. Deterg.13 (2010) 287–292. 10.1007/s11743-009-1176-9Suche in Google Scholar
17. Niranjan, P. S. and Upadhyay, S. K.: Interaction of polyacrylamide with conventional anionic and gemini anionic surfactants, Journal of Dispersion Science and Technology32 (2011) 109–113. 10.1080/01932690903542982Suche in Google Scholar
18. Tikariha, D., Kumar, B., Singh, N., Ghosh, K. K. and Quagliotto, P.: Micellization Behavior of Cationic Gemini Surfactants in Aqueous-Ethylene Glycol Solution, J. Surfact. Deterg.14 (2011) 555–562. 10.1007/s11743-011-1280-5Suche in Google Scholar
19. Lai, L., Mei, P., Wu, X. M., Hou, C., Zheng, Y. C. and Liu, Y.: Micellization of anionic gemini surfactants and their interaction awith polyacrylamide, Colloid Polym Sci292 (2014) 2821–2830. 10.1007/s00396-014-3304-ySuche in Google Scholar
20. Alejo, T., Merchán, M. D. and Velázquez, M. M.: Specific ion effects on the properties of cationic Gemini surfactant monolayers, Thin Solid Films519 (2011) 5689–5695. 10.1016/j.tsf.2011.03.018Suche in Google Scholar
21. Cai, M. J., Zhang, M. J. and Ma, P. G.: Synthesis and applications of alkylbenzene sulfonate gemini surfactants, Journal of Dispersion Science and Technology31 (2010) 1633–1637. 10.1080/01932690903297389Suche in Google Scholar
22. Vylegzhanina, N. N., Mirgorodskaya, A. B., Pankratov, V. A. and Zuev, Y. F.: Dynamic structure of the micelles of gemini alkylammonium surfactants, Colloid Journal72 (2010) 168–176. 10.1134/S1061933X10020043Suche in Google Scholar
23. Cashion, M. P., Li, X. L., Geng, Y., Hunley, M. T. and Long, T. E.: Gemini surfactant electrospun membranes, Langmuir26 (2009) 678–683. PMid:19681628; 10.1021/la902287bSuche in Google Scholar PubMed
24. Noori, S., Naqvi, A. Z., Ansari, W. H. and Din, K. U.: Interfacial and solution behavior of amphiphilic drug and counterion-coupled gemini (COCOGEM) surfactants, J Surfact Deterg18 (2015) 55–66. 10.1007/s11743-014-1643-9Suche in Google Scholar
25. Parikh, K., Mistry, B., Jana, S., Gajaria, T., Gupta, S., Devkar, R. V. and Kumar, S.: Isosorbide spacer containing gemini surfactants surface and biochemical study, Colloid Polym Sci293 (2015) 1437–1446. 10.1007/s00396-015-3528-5Suche in Google Scholar
26. Cardoso, A. M., Morais, C. M., Cruz, A. R., Silva, S. G., Vale, M. L. D., Marques, E. F., Lima, M. C. P. D. and Jurado, A. S.: New serine-derived gemini surfactants as gene delivery systems, European Journal of Pharmaceutics and Biopharmaceutics89 (2015) 347–356. PMid:25513958; 10.1016/j.ejpb.2014.12.013Suche in Google Scholar PubMed
27. Liu, F., Yang, H., Liu, M., Lin, B. P., Zhang, X. Q., Sun, Y. and Guo, L. X.: Novel crosslinked lyotropic liquid crystal materials based on acrylate-type gemini ammonium surfactant, Liquid Crystals42 (2015) 520–529. 10.1080/02678292.2015.1004137Suche in Google Scholar
28. Tiwari, A. K., Gangopadhyay, S., Chang, C. H., Pande, S. and Saha, S. K.: Study on metal nanoparticles synthesis and orientation of gemini surfactant molecules used as stabilizer, Journal of Colloid and Interface Science445 (2015) 76–83. PMid:25596371; 10.1016/j.jcis.2014.12.064Suche in Google Scholar PubMed
29. Xu, H. J., Lu, C. X., Ye, Z. W.: Synthesis and properties of a kind of anionic gemini surfactant, J East China Univ Sci Technol30 (2004) 502–505.Suche in Google Scholar
30. Huang, J. B., Zhao, G. X., Jiang, Y. C. and Wu, S. K.: Fluorescence probe study on the self-organized assemblies of the mixed catanionic surfactants, Acta physico-chimica sinica9 (1993) 577–580.10.3866/PKU.WHXB19930501Suche in Google Scholar
31. Komorek, U. and Wik, K. A.: Surface and micellar properties of new nonionic Gemini aldonamide-type surfactants, Journal of Colloid and Interfaces Science2 (2004) 206–211. 10.1016/j.jcis.2003.09.020Suche in Google Scholar PubMed
32. Li, F., Rosen, M. J. and Sulthana, S. B.: Surface properties of cationic gemini surfactants and their interaction with alkylglucoside or maltoside surfactants, Langmuir17 (2001) 1037–1042. 10.1021/la001162bSuche in Google Scholar
33. Gan, M. Y., Liu, Y., Ma, L., Hao, S. N. and Li, Z. C.: Study on the aggregation behaviors of composite emulsifiers by steady-state fluorescence, Imaging Science and Photochemistry28 (2010) 121–130.Suche in Google Scholar
34. Zhou, C. S., Yang, T., Zhang, J. C. and Zeng, Y. H.: The aggregation behaviors of anionic-cationic surfactant composite system, Fine Chemicals24 (2007) 225–227.Suche in Google Scholar
35. Zana, R.: Surfactant solutions new methods of investigation, New York: Marcel Dekker (1987) 1–5.Suche in Google Scholar
36. Frindi, M., Michels, B. and Levy, H.: Alkanediyl-alpha, omega-bis(dimethylalkylammonium bromide) surfactants 4. ultrasonic-absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solutions, Langmuir10 (1994) 1140–1145. 10.1021/la00016a028Suche in Google Scholar
37. Kreshek, G.: Water, a comprehensive treatise, in: Frank, F. (ed.), Vol 4, Plenum publishing, New York (1975) 2. 10.1007/978-1-4684-2958-9Suche in Google Scholar
38. Desnoyers, J. E.: Surfactants and Interfacial Phenomena, in: Rosen, M. J. (ed.), John Wiley & Sons publishing, New York (1989) 431. 10.1016/0021-9797(92)90419-MSuche in Google Scholar
39. He, X., Li, H. B., Huang, J. B., Tang, S. H., Zhu, Y. and Zheng, R.: A study of the properties of aqueous systems of mixed derivatives of 10-undecenoic acid, Chemical Journal of Chinese Universities2 (2002) 287–290. 10.3321/j.issn:0251-0790.2002.02.021Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments