Home Study on the Interaction Between Cellulase and Surfactants
Article
Licensed
Unlicensed Requires Authentication

Study on the Interaction Between Cellulase and Surfactants

  • Jian Zhang and Yue Yu
Published/Copyright: May 8, 2017
Become an author with De Gruyter Brill

Abstract

The conformations of secondary and tertiary structures of cellulase in the presence of eleven commonly used surfactants were determined by Raman spectroscopy and the results were discussed. The results indicated that anionic surfactants had a stronger influence on the cellulase conformations than nonionic surfactants. Thus anionic surfactants showed a stronger inactivation on the cellulase activity. Furthermore, Zeta potential distributions of cellulase in solutions of surfactants were tested by Dynamic Light Scattering (DLS). The DLS results indicated that the interaction between anionic surfactants and cellulase was attributed to electrostatic attraction. By adding cellulase to a liquid, non-cellulase-containing detergent, the detergency of the liquid detergent could be increased. Further studies on the sample swatches by optical microscopy and scanning electron microscopy (SEM) were undertaken in this paper.

Kurzfassung

Die Konformationen der sekundären und der tertiären Strukturen von Cellulase in Gegenwart von elf häufig verwendeten Tensiden wurden mit Hilfe der Ramanspektroskopie bestimmt und die Ergebnisse diskutiert. Die Ergebnisse zeigten, dass anionische Tenside einen stärkeren Einfluss auf die Cellulase-Konformationen hatten als nichtionische Tenside. Anionische Tenside inaktivierten Cellulase stärker. Darüber hinaus wurden Zetapotentialverteilungen von Cellulase in Tensid-Lösungen mittels dynamischer Lichtstreuung (DLS) bestimmt. Die DLS-Ergebnisse zeigten, dass die Wechselwirkung zwischen anionischen Tensiden und Cellulase von der elektrostatischen Anziehung bestimmt wurde. Durch Hinzugeben von Cellulase in ein flüssiges, nicht cellulasehaltiges Waschmittel konnte die Waschleistung des Waschmittels erhöht werden. Weitere Untersuchungen der Testgewebe mittels optischer Mikroskopie und Rasterelektronenmikroskopie (SEM) wurden in dieser Arbeit durchgeführt.


*Correspondence address, Prof. Jian Zhang, Shanxi University, School of Chemistry and Chemical Engineering, Taiyuan, Shanxi, China, Tel.: 13834110276, E-Mail:

Jian Zhang is a professor at School of Chemistry and Chemical Engineering, Shanxi University. After she received her PhD in chemistry from Taiyuan University of Technology, she went to Oxford University, Physical and Theoretical Chemistry Laboratory for post-doctoral research program which sponsored by Royal Society U.K. Her research interest lies in detergent enzymes and its application.

Yue Yu is a graduate student at School of Chemistry and Chemical Engineering, Shanxi University.


References

1. Sharif, B. A. and Mohammed, M. I.: Cellulase biocatalysis: key influencing factors and mode of action, Cellulose.6 (2015) 21572182. 10.1007/s10570-015-0672-5Search in Google Scholar

2. Park, J. and Park, K.: Improvement of the physical properties of reprocessed paper by using biological treatment with modified cellulase, Bioresour Technol.79 (2001) 9194. 10.5423/PPJ.2009.25.1.091Search in Google Scholar

3. Ramesh, C. K. and Richa, S.: A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram's Iodine, Rapid Method for Screening Cellulases.57 (2008) 503507. 10.1007/s00284-008-9276-8Search in Google Scholar

4. Bhat, M. K.: Cellulases and related enzymes in biotechnol-ogy, Biotechnol Adv.18 (2000) 355383. 10.1016/S0734-9750(00)00041-0Search in Google Scholar

5. Gusakov, A. V., Berlin, A. G., Popova, N. and Sinitsyn, A.: A comparative study of different cellulasepreparations in the enzymatic treatment of cotton fabrics, Appl Biochem Biotechnol.88 (2000) 119126. 10.1385/ABAB:88:1-3:119Search in Google Scholar

6. Ida, L., Barare, R. E. and Jonathan, W.: The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy, ELSEVIER82 (2000) 213221. 10.1016/S0304-3991(99)00158-8Search in Google Scholar

7. Jim, L: Protease Stabilization by Highly Concentrated Anionic Surfactant Mixtures, JAOCS.72 (1995) 5359. 10.1007/BF02635779Search in Google Scholar

8. Kravetz, L. and Guin, K. F.: Effect of surfactant structure on stability of enzymes formulated into laundry liquids, J Am Oil Chem Soc.62 (1985) 943949. 10.1007/BF02541765Search in Google Scholar

9. Zhang, Y. H., Hong, J. and Ye, X. H.: Cellulase assays, Biofuels: methods and protocols.5 (2009) 213231. PMid:19768625; 10.1007/978-1-60761-214-8_14Search in Google Scholar

10. Yu, Y., Zhang, J. and He, De.: Studies on conditions for determination of cellulase activity and its adoption for determination in cellulase formulated detergent products, China Surfactant Detergent & Cosmetics.45 (2015) 457461. 10.13218/j.cnki.csdc.2015.08.009Search in Google Scholar

11. Daniel, N. and Josef, S.: Raman Spectroscopy of Proteins and Nucleoproteins, Current Protocols in Protein Science. 2 (2013) 17.8.117.8.52. 10.1002/0471140864Search in Google Scholar

12. Shi, Q.: Inhibitory influence of surfactants on cellulase's catalytic reaction, TEXTILE AUXILIARIES.13 (1996) 3537.Search in Google Scholar

13. Geng, B., Guo, M. J. and Zhang, S. L.: Raman spectral analysis of cellobiase at various pH, Journal of East China University of Science and Technology. 3 (2008) 342344. 10.14135/j.cnki.1006-3080.2008.03.005Search in Google Scholar

14. Li, M. and Xu, X. W.: Effects of surfactants and dyes on cellulase activity, Journal of Textile Research.7 (1996) 327. 10.3969/j.issn.2095-0101.2009.04.009Search in Google Scholar

15. Huang, Z. X., Zhang, H. L. and Yao, W. H.: Raman spectroscopy study of zinc finger ZNF191(243–368), Chinese Science Bulletin.48 (2003) 17221727. 10.1360/02wb0130Search in Google Scholar

16. Ganesh, K. and Venkatesan, R.: Effects of nonionic surfactant on hydrolysis and fermentation of protein rich tannery solid waste, Biodegradation.19 (2008) 739748. PMid:18288576; 10.1007/s10532-008-9178-2Search in Google Scholar

17. Yang, Q. L. and Yang, X. Q.: Effects of some surfactants on activity of liquid protease, China Surfactant Detergent &Cosmetics.34 (2005) 296298. 10.3969/j.issn.1671-3206.2005.05.013Search in Google Scholar

18. Yuan, J. G., Wang, P. and Wang, G, Q.: Effect of surfactant on cellulase bio-washing, Journal of Textile Research.35 (2014) 7882. 10.13475j.fzxb.201405007805Search in Google Scholar

19. Zhang, J. and Zhang, J.: Study on the interaction of alkaline protease with main surfactants in detergent, Colloid and Polymer Science.294 (2016) 247255. 10.1007/s00396-015-3777-3Search in Google Scholar

20. Aubrey, K. L. and Thomas, G. J.: Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically deuterated alanine and tryptophan side chains. Assignments and structural interpretation, Biophys. J.60 (1991) 13371349. 10.1016/S0006-3495(91)82171-3Search in Google Scholar

21. Wu, J. L. and Li, H. Z.: Effect of alkyl chain length and EO chain on AES, China Surfactant Detergent & Cosmetics.5 (1990) 19. 10.13222/j.cnki.dc.1990.05.001Search in Google Scholar

Received: 2016-10-28
Accepted: 2017-01-09
Published Online: 2017-05-08
Published in Print: 2017-05-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110493/html
Scroll to top button