Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
-
Seyedeh Sara Soleimani
Abstract
In this study, a thermo-tolerant and alkaline lipase enzyme was purified from Lactobacillus brevis and immobilized onto modified γ-Fe3O4 florisil nanoparticles (γ-Fe3O4 MF NFs) and the usability of free lipase (FL) and immobilized lipases (IML) as detergent additives was investigated. Lipase enzyme was purified by fractional precipitation using 20% ammonium sulfate, DEAE-Sephadex ion-exchange chromatographic column, and Sephacryl S200 gel filtration chromatographic techniques. Then, the enzyme was purified, which resulted in 135.2-fold purification. Its molecular mass was determined to be 57 kDa by SDS-PAGE. The covalent immobilization of purified lipase was done using γ-Fe3O4 MF NPs. γ-Fe3O4 MF NPs and IML were characterized by using SEM, TEM, FT-IR, and XRD. IML showed a good thermo-stability and its activities were calculated as 80% at 60°C. The free and IML enzymes were most stable at alkaline pHs in the range of 7.0–10.0. Also, IML is more stable towards metal ions compared to free lipase enzyme. Washing performances of some detergent formulations were investigated in the presence and absence of Lipase. Olive oil was removed by the detergent alone and by the detergent and IML at ratios of 45% and 72%, respectively. The study on removal of oil stain from cotton cloths indicated that the removal of oil was superior in the presence of IML and IML with detergent, when compared to the detergent alone.
Kurzfassung
In dieser Untersuchung wurde eine thermisch tolerante und alkalische Lipase aus Lactobacillus brevis gewonnen und auf modifizierten γ-Fe3O4-Florisil-Nanopartikeln immobilisiert. Es wurde die Verwendung sowohl der freien Lipase (FL) als auch der immobilisierten Lipase (IML) als Waschmitteladditiv untersucht. Die Lipase wurde mit der fraktionierten Fällung unter Verwendung von 20% Ammoniumsulfat, einer DEAE-Sephadex-Ionenaustausch-Chromatographiesäule und mit dem chromatographischen Gelfiltationsverfahren (Sephacryl S200) gereinigt. Anschließend was das Enzym 135,2-fach gereinigt. Die mit SDS-PAGE bestimmte Molekülmasse betrug 57 kDa. Die kovalente Immobilisierung der gereinigten Lipase erfolgte mit magnetischen Florisil-Nanopartikeln (γ-Fe3O4 MF NPs). Die Charakterisierung der γ-Fe3O4 MF NPs und der IML erfolgte mit SEM, TEM, FT-IR, and XRD. IML zeigte eine gute Thermostabilität und ihre Aktivitäten betrugen 80% bei 60°C. Sowohl das freie als auch das immobilisierte Enzym waren bei alkalischen pH-Werten im Bereich von 7.0 bis 10.0 am stabilsten. IML zeigte sich gegenüber Metallionen stabiler als die freie Lipase. Die Waschleistung einiger Waschmittelformulierungen wurde in Ab- und Anwesenheit von Lipase untersucht. Olivenöl wurde durch IML und Waschmittel zu 72% entfernt, mit Waschmittel allein zu 45%. Die Untersuchung zur Entfernung von Ölflecken auf Baumwolle zeigte, dass die Ölentfernung in Gegenwart von IML bzw. von IML und Waschmittel besser war als in Anwesenheit von Waschmittel allein.
References
1. Jaeger, K. E. and Eggert, T.: Lipases for biotechnology, Curr Opin Biotechnol13 (2002) 390–397. 10.1016/S0958-1669(02)00341-5Suche in Google Scholar
2. Sharma, R., Chisti, Y. and Banerjee, U. C.: Production, purification, characterization, and applications of lipases. Biotechnol Adv19 (2001) 627–662. 10.1016/S0734-9750(01)00086-6Suche in Google Scholar
3. Jaeger, K. E. and Reetz, M. T.: Microbial lipases form versatile tools for biotechnology. Trends Biotechnol16 (1998) 396–403. 10.1016/S0167-7799(98)01195-0Suche in Google Scholar
4. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N. and Soccol, V. T.: The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem29 (Pt 2) (1999) 119–131. PMid:10075908; 10.1111/j.1470-8744.1999.tb00541.xSuche in Google Scholar
5. Wiseman, A.: Introduction to Principles. In: Handbook of Enzyme Biotechnology, Wiseman, A. (Ed.). 3rd Edn., Ellis Horwood Ltd., T. J. Press Ltd., Padstow, Cornwall, UK, (1995) pp: 3–8.Suche in Google Scholar
6. Demain, A. L. and Solomon, N. A.: In Industrial Microbiology and the Advent of Genetic Engineering, Scientific American, Freeman & Comp., San Francisco (1981) pp. 3–14.Suche in Google Scholar
7. Liu, Y., Purich, D. L., Wu, C., Wu, Y., Chen, T., Cui, C., Zhang, L., Cansiz, S., Hou, W., Wang, Y., Yang, S. and Tan, W.: Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzyme like properties. J Am Chem Soc137 (47) (2015) 14952–14958. PMid:26562739; 10.1021/jacs.5b08533Suche in Google Scholar PubMed PubMed Central
8. Choi, K. and Lee, W.: Enhanced degradation of trichloroethylene in nano-scale zerovalent iron Fenton system with Cu (II). J Hazard Mater211–212 (2012) 146–153. 10.1016/j.jhazmat.2011.10.056Suche in Google Scholar PubMed
9. Prucek, R., Hermanek, M. and Zboril, R.: An effect of iron (III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation – A competition between homogeneous and heterogeneous catalysis. Appl Catal A: Gen366 (2009) 325–332. 10.1016/j.apcata.2009.07.019Suche in Google Scholar
10. Lin, Y., Weng, C. and Chen, F.: Effective removal of AB24 dye by nano/micro-size zerovalent iron. Sep Purif Tech64 (2008) 26–30. 10.1016/j.seppur.2008.08.012Suche in Google Scholar
11. Dutta, B., Jana, S., Bhattacharjee, A., Gutlich, P., Iijima, S. and Koner, S.: γ-Fe2O3 nanoparticle in NaY-zeolite matrix: Preparation, characterization and heterogeneous catalytic epoxidation of olefins. Inorg, Chim. Acta363 (2010) 696–704. 10.1016/j.ica.2009.11.025Suche in Google Scholar
12. Nie, Y., Hu, C., Zhou, L., Qu, J., Wei, Q. and Wang, D.: Degradation characteristics of humic acid over iron oxides/Fe0 core-shell nanoparticles with UVA/H2O2. J. Hazard. Mat.173 (2010) 474–479. PMid:19762150; 10.1016/jSuche in Google Scholar
13. Chen, J., Qiu, X., Fang, Z., Yang, M., Pokeung, T., Gu, F., Cheng, W. and Lan, B.: Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem. Eng. J.181–182 (2012) 113–119. 10.1016/j.cej.2011.11.037Suche in Google Scholar
14. Ortiz de la Plata, G., Alfano, O. and Cassano, A.: 2-Chlorophenol degradation via photo Fenton reaction employing zero valent iron nanoparticles. J. Photochem. Photobiol. A Chem.233 (2012) 53–59. 10.1016/j.jphotochem.2012.02.023Suche in Google Scholar
15. Perkowski, J., Jóźwiak, W., Kos, L. and Stajszczyk, P.: Application of Fenton's reagent in detergent separation in highly concentrated water solutions. Fibres Text East Eur.59 (2006) 114–119.Suche in Google Scholar
16. Kos, L., Sójka-Ledakowicz, J., Michalska, K., Żyłła, R. and Perkowski, J.: Decomposition of a nonionic detergent by the fenton process in the presence of iron nanocompounds, Fibres Text East Eur.21, 6 (102) (2013) 111–115. 10.1007/s11356-014-3028-zSuche in Google Scholar PubMed
17. Ivask, A., Titma, T., Visnapuu, M., Vija, H., Kakinen, A., Sihtmae, M., Pokhrel, S., Madler, L., Heinlaan, M., Kisand, V., Shimmo, R. and Kahru, A.: Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top. Med. Chem.15 (18) (2015)1914–29. PMid:259612110.2174/1568026615666150506150109Suche in Google Scholar PubMed
18. Kesmen, Z., Yetiman, A. E., Gulluce, A., Kacmaz, N., Sagdic, O., Cetin, B., Adiguzel, A., Sahin, F. and Yetim, H.: Combination of culture – dependent and culture – independent molecular methods for the determination of lactic microbiota in sucuk. Int. J. Food Microbiol.153 (3) (2012) 428–435. PMid:22209604; 10.1016/j.ijfoodmicro.2011.12.008Suche in Google Scholar PubMed
19. Pan, C., Hu, B., Li, W., Sun, Y., Ye, H. and Zeng, X.: Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J. Mol. Catal. B: Enzym.61 (2009) 208–215. 10.1016/j.molcatb.2009.07.003Suche in Google Scholar
20. Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys.36 (2003) R167–r181. 10.1088/0022-3727/36/13/201Suche in Google Scholar
21. Rahman, I. A. and Padavettan, V.: Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-A review. J. Nanomater. Article ID 132424, (2012) 15 pages http://dx.DOI.org/10.1155/2012/132424. 10.1155/2012/132424Suche in Google Scholar
22. Ahmad, M. R.andSardar, M.: Enzyme immobilization: An overview on nanoparticles as immobilization. Biochem. Anal. Biochem.4 (178) (2015) 1–8. 10.4172/2161-1009.1000178Suche in Google Scholar
23. Onem, H. and Nadaroglu, H.: Preparation and properties of purified phytase from oakbug milkcap (Lactarius quietus) immobilised on coated chitosan with iron nano particles and investigation of its usability in food industry. J. Food Nutr. Res.2 (12) (2014) 938–945. 10.12691/jfnr-2-12-13Suche in Google Scholar
24. Onem, H., Cicek, S. and Nadaroglu, H.: Immobilization of a thermo-stable phytase from Pinar melkior (Lactarius piperatus) onto magnetic Fe3O4-chitosan nanoparticles. CYTA – J Food50 (5) (2015) 1158–1165. 10.1080/19476337.2015.1045942Suche in Google Scholar
25. Kumar, R., Sharma, A., Kumar, A. and Singh, D.: Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Appl. Sci. J.16 (7) (2012) 940–948.Suche in Google Scholar
26. Adiguzel, A., Nadaroglu, H. and Adiguzel, G.: Purification and characterisation of β-mannanase from Bacillus pumilus (M27) and its aplications in some fruit juices. J. Food Sci. Tech.52 (8) (2015) 5292–5298. PMid:26243955; 10.1007/s13197-014-1609-ySuche in Google Scholar
27. Adiguzel, G., Sonmez, Z., Adiguzel, A. and Nadaroglu, H.: Purification and characterization of a thermo-stable endo-beta-1,4 mannanase from Weissella viridescens LB37 and its application in fruit juice clarification. Eur Food Res Technol242 (2016) 769–776. 10.1007/s00217-015-2584-xSuche in Google Scholar
28. Kim, H. K, Park, S. Y. and Oh, T. K.: Purification and partial characterization of thermo-stable carboxyl esterase from Bacillus stearothermophilus L1, J. Microbiol. Biotechnol.7 (1997) 32–36.Suche in Google Scholar
29. Bayoumi, R. A., EL-Louboudey, S. S., Sidkey, N. M., Abd-El-Rahman, M. A.: Production, purification and characterization of thermoalkalophilic lipase for application in bio-detergent industry. J. Appl. Sci. Res.3 (2007) 1752–1765.Suche in Google Scholar
30. Bradford, M. M.: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem.2 (1976) 248–253. 10.1021/ac60098a019Suche in Google Scholar
31. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature22 (1970) 680–685. 10.1038/227680a0Suche in Google Scholar
32. Weethall, H. H.: Covalent coupling methods for inorganic support materials. Methods Enz.44 (1976)134–148. 10.1016/S0076-6879(76)44012-0Suche in Google Scholar
33. Cho, S. W. and Rhee, J. S.: Immobilization of lipase for effective interestification of fats and oils in organic solvents. Biotech. Bioeng.41 (1993) 204–210. PMid:18609539; 10.1002/bit.260410206Suche in Google Scholar PubMed
34. Chauhan, M., Chauhan, R. S. and Garlapati, V. K.: Evaluation of a new lipase from Staphylococcus sp for detergent additive capability. BioMed Res. Int. ID 374967 (2013) pp 1–6.10.1155/2013/374967Suche in Google Scholar PubMed PubMed Central
35. Sugihara, A., Scnoo, T., Enoki, A., Shimada, Y., Nagao, T. and Tominaga, Y.: Purification and characterization of a lipase from Pichia burtonii. Appl. Microbiol. Biotechnol.43 (1995) 277–81. 10.2166/wst.2008.077Suche in Google Scholar PubMed
36. Kulkarni, N. and Gadre, R. V.: Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2 W. J. Ind. Food Microbiol.28 (2002) 344–348. 10.1038/sj.jim.7000254Suche in Google Scholar
37. Lesuisse, E., Schanck, K. and Colson, C.: Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis168, an extremely basic pH-tolerant enzyme. Eur. J. Biochem.216 (1993) 155–160. PMid:8396026; 10.1111/j.1432-1033.1993.tb18127.xSuche in Google Scholar
38. Nawani, N. and Kaur, J.: Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp J33. Mol. Cell Biochem.206 (2000) 91–96; http://dx.DOI.org/10.1023/A:1007047328301. 10.1023/A:1007047328301Suche in Google Scholar
39. Snellman, E. A., Sullivan, E. R. and Colwell, R. R.: Purification and properties of the extracellular lipase, Lip A, of Acinetobacter sp RAG-1. Eur. J. Biochem.269 (2002) 5771–5779. PMid:12444965; 10.1046/j.1432-1033.2002.03235.xSuche in Google Scholar
40. Saxena, R. K., Sheoran, A., Giri, B. and Davidson, W. S.: Purification strategies for microbial lipases. J. Microbiol. Methods52 (2003) 1–18. 10.1016/S0167-7012(02)00161-6Suche in Google Scholar
41. Castro-Ochoa, L. D., Rodriguez-Gomez, C., Valerio-Alfaro, G. and Ros, R. O.: Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb. Technol.37 (2005) 648–654. 10.1016/j.enzmictec.2005.06.003Suche in Google Scholar
42. Zhang, A., Gao, R., Diao, N., Xie, G., Gao, G. and Cao, S.: Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM 5963. J. Mol. Catal. B: Enzym.56 (2–3) (2009) 78–84.10.1016/j.molcatb.2008.06.021Suche in Google Scholar
43. Rahman, R. N. Z. R. A, Baharum, S. N., Basri, M. and Salleh, A. B.: High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp strain S5. Anal. Biochem.341 (2) (2005) 267–274. PMid:15907872; 10.1016/j.ab.2005.03.006Suche in Google Scholar
44. Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasuda, M. and Ishikawa, H.: Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng89 (5) (2000) 451–457. PMid:16232776; 10.1016/S1389-1723(00)89095-7Suche in Google Scholar
45. Sulong, M. R., Rahman, R. N. A., Salleh, A. B. and Basri, M.: A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: extracellular expression of a novel OST-lipase gene. Protein Expr. Purif.49 (2) (2006) 190–195. PMid:16769222; 10.1016/j.pep.2009.08.004Suche in Google Scholar PubMed
46. Hertadi, R. and Widhyastuti, H.: Effect of Ca2+ ion to the activity and stability of lipase isolated from Chromohalobacter japonicus BK-AB18. Procedia Chem.16 (2015) 306–313. 10.1016/j.egypro.2013.05.116Suche in Google Scholar
47. Abramić, M., Leščić, I., Korica, T., Vitale, L., Saenger, W. and Pigac, J.: Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme Microb. Tech.25 (6) (1999) 522–529. 10.1016/S0141-0229(99)00077-0Suche in Google Scholar
48. Lupa, L., Negrea, A., Ciopec, M. and Negrea, P.: Cs+ Removal from aqueous solutions through adsorption onto florisil ımpregnated with Trihexyl(tetradecyl)phosphonium chloride. Molecules18 (2013) 12845–12856. PMid:24135940; 10.3390/molecules181012845Suche in Google Scholar
49. Altun, S., Cakiroglu, B., Ozacar, M. and Ozacar, M.: A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe2O4 magnetic nanoparticles. Coll. Surf. B: Biointerfaces136 (2015) 963–970. PMid:26562188; 10.1016/j.colsurfb.2015.10.053Suche in Google Scholar
50. Cao, C., Xiao, L., Chen, C., Shi, X., Cao, Q. and Gao, L.: In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye. Powder Tech.260 (2014) 90–97. 10.1016/j.powtec.2014.03.025Suche in Google Scholar
51. Grbavci, S., Bezbradica, D. and Izrael-Zivkovi, L.: Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Biores. Tech.102 (24) (2011) 11226–11233. PMid:22004595; 10.1016/j.biortech.2011.09.076Suche in Google Scholar
52. Sajna, K. V., Sukumaran, R. K. and Jayamurthy, H.: Studies on biosurfactants from Pseudozyma sp NII, 08165 and their potential application as laundry detergent additives, Biochem. Eng. J.78 (2013) 85–92. 10.1016/j.bej.2012Suche in Google Scholar
53. Nadaroglu, H., Adiguzel, A. and, Adiguzel, G.: Purification and characterization of β-mannanase from Lactobacillus plantarum (M24) and its applications in some fruit juicesInt J Food Sci Technol50 (5) (2015) 1158–1165. 10.1111/ijfs.12739Suche in Google Scholar
54. Hemachander, C. and Puvanakrishnan, R.: Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochemistry.35 (2000) 809–881. 10.1016/S0032-9592(99)00140-5Suche in Google Scholar
55. Khoo, M. L. and Ibrahim, C. O.: Lipase from thermoalkalophilic Pseudomonas species as an additive in potential laundry detergent formulations. Malaysian J. Microbiol.5 (1) (2009) 1–5.Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments