Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
-
Huchuan Wang
Abstract
Calcium carbonate is considered as the most frequent scale commonly occurring in cooling water systems. To reduce calcium carbonate scale in an environment–friendly way, a copolymer consisting of acrylic acid (AA)-acrylamide (AM)-polypropylene glycol and maleic anhydride (PPGAZMA) was developed to inhibit this phenomenon. The structure of the AA-AM-PPGAZMA was characterized by FT-IR method. The performance of AA-AM-PPGAZMA inhibition process was evaluated from static experiment method. Results indicated that excellent ability to control inorganic minerals, with approximately 71.1% calcium carbonate inhibition under the optimum conditions. Also the effect of the copolymer addition on the crystals of calcium carbonate scales morphology was examined through scanning electron microscopy (SEM). SEM illustrated that great changes in the size and morphology of the calcium carbonate scales took place under the influence of AA-AM-PPGAZMA. SEM and XRD results identify that not only the scales shape and size changed but also that the scales forms altered to an extent.
Kurzfassung
Calciumcarbonat ist die am häufigsten in Kühlwassersystemen auftretende Ablagerung. Zur umweltfreundlichen Reduktion dieser Ablagerungen aus Calciumcarbonat wurde ein Polymer aus Acrylsäue (AA)-Acrylamid (AM)-Polypropylenglycol und Maleinsäureanhydrid (PPGAZMA) entwickelt. Die Struktur von AA-AM-PPGAZMA wurde mit FT-IR bestimmt. Die Wirkung des Inhibierungsvorgangs mit AA-AM-PPGAZMA wurde experimentell mit der statischen Methode festgestellt. Die Ergebnisse zeigten, unter optimierten Bedingungen eine hervorragende Kontrolle der anorganischen Mineralien von etwa 71.1% Calciumcarbonatinhibierung. Auch der Einfluss der Kopolymeraddition auf die Morphologie der abgelagerten Calciumcarbonatkristalle wurde mit der Rasterelektronenmikroskopie (SEM) untersucht und zeigte deutliche Änderungen der Größe und der Morphologie der Calciumcarbonatablagerungen unter dem Einfluss von of AA-AM-PPGAZMA. Mit der Rasterelektronenmikroskopie und Röntgenbeugung (XRD) war zu erkennen, dass sich nicht nur die Form und Größe der Kalkablagerungen sondern sich auch ihre Formen im gewissen Maß veränderten.
References
1. Gu, X. X., Qiu, F.X., Zhou, X., Qi, J., Zhou, Y., Yang, D. Y., Guo, Q. and Guo, X. R.: Preparation and application of polymers as inhibitors for calcium carbonate and calcium phosphate Scales, Int. J. Polym. Mater. Polym. Biomater.62 (2013) 323–329. 10.1080/00914037.2012.670824Search in Google Scholar
2. Zarga, Y., Boubaker, H. B., Ghaffour, N. and Elfil, H.: Study of calcium carbonate and sulfate co-precipitation, Chem. Eng. Sci.96 (2013) 33–41. 10.1016/j.ces.2013.03.028Search in Google Scholar
3. Arras, W., Ghaffour, N. and Hamou, A.: Performance evaluation of BWRO desalination plant-a case study, Desalination235 (2009) 170–178. 10.1016/j.desal.2008.02.009Search in Google Scholar
4. Liu, G. Q., Xue, M. W., Liu, Q. P. and Zhou, Y. M.: Acrylic acid-allylpolyethoxy carboxylate copolymer as a environmentally friendly scale inhibitor (part II), Clean Techn Environ Policy. 10.1007/s10098-016-1258-0Search in Google Scholar
5. Menzri, R., Ghizellaoui, S. and Tlili, M.: Calcium carbonate inhibition by green inhibitors: Thiamine and Pyridoxine, Desalination404 (2017) 147–154. 10.1016/j.desal.2016.11.005Search in Google Scholar
6. Demadis, K. D. and Katarachia, S. D.: Metal-Phosphonate chemistry: preparation, crystal structure of calcium-amino-tris-methylene phosphonate and CaCO3 inhibition, Phosphorus Sulfur Silicon.179 (2004) 627–648. 10.1080/10426500490441514Search in Google Scholar
7. Menzri, R., Ghizellaoui, S. and Tlili, M.: Calcium carbonate inhibition by green inhibitors: Thiamine and Pyridoxine, Desalination404 (2017) 147–154. 10.1016/j.desal.2016.11.005Search in Google Scholar
8. Zhang, P., Shen, D., Ruan, G. D., Kan, A. T. and Tomson, M. B.: Phosphino-polycarboxylic acid modified inhibitor nanomaterial for oilfield scale control: Synthesis, characterization and migration, J. Ind. Eng. Chem.45 (2017) 366–374. 10.1016/j.jiec.2016.10.004Search in Google Scholar
9. Ketsetzi, A., Stathoulopoulou, A. and Demadis, K. D.: Being “Green” in chemical water treatment technologies: Issues, Challenges and Developments, Desalination223 (2008) 487–493. 10.1016/j.desal.2007.01.230Search in Google Scholar
10. Demadis, K. D., Katarachia, S. D. and Koutmos, M.: Crystallite growth and characterization of zinc-(amino-tris-(methylene phosphonate)) organic-inorganic hybrid networks and their inhibiting effect on metallic corrosion, Inorg. Chem.8 (2005) 254–258.Search in Google Scholar
11. Zieba, A. G., Sethuraman, F. P. and Nancollas, G. H.: Influence of organic phosphonates on hydroxyapatite crystallite growth kinetics, Langmuir12 (1996) 2853–2858. 10.1021/la950842pSearch in Google Scholar
12. Demadis, K. D. and Peter, B.: Chemistry of organophosphonate scale growth inhibitors: two-dimensional, layered polymeric networks in the structure of tetrasodium 2-hydroxyethyl-amino-bis(methylenephos-phonate), J. Solid State Chem.177 (2004) 4768–4776. 10.1016/j.jssc.2004.07.042Search in Google Scholar
13. Tomson, M. B. and Nancollas, G. H.: Mineralization kinetics: A constant composition approach, Science200 (1978) 1059–1060. PMid:17740700; 10.1126/science.200.4345.1059Search in Google Scholar PubMed
14. Demadis, K. D., Mavredaki, E., Stathoulopoulou, A., Neofotistou, E. and Mantzaridis, C.: Industrial water systems: Problems, challenges and solutions for the process industries, Desalination213 (2007) 38–46. 10.1016/j.desal.2006.01.042Search in Google Scholar
15. Mavredaki, E., Stathoulopoulou, A., Neofotistou, E. and Demadis, K. D.: Environmentally benign chemical additives in the treatment and chemical cleaning of process water systems: Implications for green chemical technology, Desalination210 (2007) 257–265. 10.1016/j.desal.2006.05.050Search in Google Scholar
16. Fu, C., Zhou, Y., Huang, J., Xie, H., Liu, G., Wu, W. and Sun, W.: Preparation and characterization of a phosphorous free and non-nitrogen antiscalant in industrial cooling systems, Tenside Surf. Det.1 (2011) 60–66. 10.3139/113.110105Search in Google Scholar
17. Liu, G. Q., Huang, J. Y., Zhou, Y. M., Yao, Q. Z., Ling, L., Zhang, P. X., Fu, C. E., Wu, W. D., Sun, W. and Hu, Z. J.: Acrylic acid-allylpolyethoxy carboxylate copolymer dispersant for calcium carbonate and iron(III) hydroxide scales in cooling water systems, Tenside Surf. Det.3 (2012) 216–221. 10.3139/113.110185Search in Google Scholar
18. Wang, H. C., Zhou, Y. M., Yao, Q. Z., Ma, S. S., Wu, W. D. and Sun, W.: Synthesis of fluorescent-tagged scale inhibitor and evaluation of its calcium carbonate precipitation performance, Desalination340 (2014) 1–10. 10.1016/j.desal.2014.02.015Search in Google Scholar
19. Wu, Z., Zhou, Y. M., Yao, Q. Z., Wang, H. C., Liu, Y. M., Tao, W. T., Chu, X. Y., Sun, W. and Wu, W. D.: Synthesis of glutamic-modified polyether copolymer as a novel non-phosphorous inhibitor for carbonate scales in cooling water systems, Desalin. Water Treat.57 (41) (2016) 19206–19215. 10.1080/19443994.2015.1101017Search in Google Scholar
20. Cao, K., Zhou, Y. M., Liu, G. Q., Wang, H. C. and Sun, W.: Preparation and properties of a polyether-based polycarboxylate as an antiscalant for gypsum. J. Appl. Polym. Sci.131 (8) (2014) 631–644. 10.1002/app.40193Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments