Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
-
Khalisanni Khalid
Abstract
The interest to determine the ionization degree of counterion initiates the need to study the relationship between counterion binding constant (RXBr) and the growth of self-assembly micellar structure. This paper discussed the microscopic evidence for the correlation of counterion binding constant values and micellar structure of cationic surfactants in the presence of phenolates and 2-ethyl phenolates ions in flexible nanoparticle (FN)-system of ionized phenyl salicylate-catalyzed piperidinolysis. The sizes of micelles were determined by particle size analysis. Transmission electron microscopy (TEM) results showed a spherical micellar structure for phenolates and 2-ethyl phenolates ions at counterion binding constant values 6.3 ± 1.0 and 24.0 ± 1.1 respectively. A study using a semi-emperical kinetic technique in published article proved that the suggested micellar structures at respective counterion binding constant values corresponded with the present microscopic evidence.
Kurzfassung
Das Interesse, den Ionisationsgrad des Gegenions zu bestimmen, bildete den Ausgangspunkt, die Beziehung zwischen der Gegenionenbindungskonstante (RXBr) und dem Wachstum einer selbst-organisierenden mizellaren Struktur zu untersuchen. In diesem Beitrag wurde der mikroskopische Nachweis für die Korrelation der Gegenionbindungskonstanten und der mizellaren Struktur kationischer Tenside in Gegenwart von Phenolat- und 2-Ethylphenolat-Ionen in einem flexiblen Nanopartikelsystem (FN-System) der ionischen durch Phenylsalicylat katalysierten Piperidinolyse diskutiert. Die Größen der Mizellen wurden durch Partikelgrößenanalyse bestimmt. Die Transmissionselektronenmikroskopie (TEM) zeigte eine kugelige mizellare Struktur für Phenolat- und 2-Ethylphenolat-Ionen bei RXBr von 6,3 ± 1,0 bzw. von 24,0 ± 1,1. Die mittels des hier eingesetzten mikroskopischen Nachweises erhaltenen Gegenionenbindungskonstanten und die sich daraus ergebenden mizellaren Strukturen stimmen mit denen einer bereits veröffentlichten Untersuchung, wo eine semi-empirische kinetische Technik verwendet wurde, überein.
References
1. Sauerová, P., Verdánová, M., Mravec, F., Pilgrová, T., Venerová, T., Hubálek Kalbáčová, M. and Pekař, M.: Hyaluronic acid as a modulator of the cytotoxic effects of cationic surfactants, Colloid Surf. A483 (2015) 155–161. 10.1016/j.colsurfa.2015.06.058Search in Google Scholar
2. Ferrer-Tasies, L., Moreno-Calvo, E., Cano-Sarabia, M., Aguilella-Arzo, M., Angelova, A., Lesieur, S., Ricart, S., Faraudo, J., Ventosa, N. and Veciana, J.: Quatsomes: Vesicles formed by self-assembly of sterols and quaternary ammonium surfactants, Langmuir29 (2013) 6519–6528. PMid:23647396; 10.1021/la4003803Search in Google Scholar PubMed
3. El-Sheikh, S. M., El-Sherbiny, S., Barhoum, A. and Deng, Y.: Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics, Colloid Surf. A422 (2013) 44–49. 10.1016/j.colsurfa.2013.01.020Search in Google Scholar
4. Lu, K., Zhang, X.-L., Zhao, Y.-L. and Wu, Z.-L.: Removal of color from textile dyeing wastewater by foam separation. J. Hazard Mater.182 (2010) 928–932. PMid:20599321; 10.1016/j.jhazmat.2010.06.024Search in Google Scholar PubMed
5. Chaudhuri, R. G. and Paria, S.: Synthesis of sulfur nanoparticles in aqueous surfactant solutions, J. Colloid Interface Sci.343 (2010) 439–446. PMid:20038467; 10.1016/j.jcis.2009.12.004Search in Google Scholar PubMed
6. Tang, X.-F., Yang, Z.-G. and Wang, W.-J.: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology, Colloids Surf. A360 (2010) 99–104. 10.1016/j.colsurfa.2010.02.011Search in Google Scholar
7. Friman, R., Backlund, S., Teixeira, C. V. and Linden, M.: Vesicular phase behaviour in ionic surfactant systems with organic counter-ions, Tenside Surfact. Det.43 (2006) 28–33. 10.3139/113.100297Search in Google Scholar
8. Wang, G. and Li, G.: The micelle-to-vesicle phase transition in dilute aqueous solution from undecylamine induced by metal (II) ion (Cu2+), Tenside Surfact. Det.47 (2010) 258–261. 10.3139/113.110077Search in Google Scholar
9. Zhou, X. and Zhang, D.: Transition from micelle to vesicle of a novel sugar-based surfactant containing trisiloxane, Tenside Surfact. Det.53 (2016) 273–277. 10.3139/113.110433Search in Google Scholar
10. Zeng, X., Wang, H., Chen, Y. and Wang, L.: Synthesis and solution properties of new polysiloxane bola surfactants containing carbohydrate, Tenside Surfact. Det.51 (2014) 427–431. 10.3139/113.110325Search in Google Scholar
11. Schulz, S. G., Frieske, U., Kuhn, H., Schmid, G., Müller, F., Mund, C. and Venzmer, J.: Mesoscale computer simulations on the phase behavior of the non-ionic surfactant C12E5, Tenside Surfact. Det.41 (2004) 230–233. 10.3139/113.100228Search in Google Scholar
12. Hoffmann, S., Provost, M., Medebach, S., Rogers, N., Wagner, J. and Gradzielski, M.: Control of rheological behaviour with oppositely charged polyelectrolyte surfactant mixtures, Tenside Surfact. Det.48 (2011) 488–494. 10.3139/113.110157Search in Google Scholar
13. Oremusová, J., Vitková, Z. and Vitko, A.: Study of micelle properties and thermodynamics of micellization of the benzethonium chloride, Tenside Surfact. Det.49 (2012) 322–329. 10.3139/113.110198Search in Google Scholar
14. Sun, Y., Liu, C., Qiao, W. and Zhou, M.: Complex behavior of series of cationic carbamate surfactants with SDBS, SDS, SAS anionic surfactants, Tenside Surfact. Det.53 (2016) 47–55. 10.3139/113.110409Search in Google Scholar
15. Carey, E., Patil, S. R. and Stubenrauch, C.: Conductivity measurements as a method for studying ionic technical grade surfactants, Tenside Surfact. Det.45 (2008) 120–125. 10.3139/113.100368Search in Google Scholar
16. Oelshlaeger, C., Suwit, P. and Willenbacher, N.: Effect of counterion binding efficiency on structure and dynamics of wormlike micelles, Langmuir26 (2010) 7045–7053. PMid:20180526; 10.1021/la9043705Search in Google Scholar PubMed
17. Bijma, K., Rank, E. and Engberts, J. B. F. N.: Effect of counterion structure on micellar growth ofalkylpyridinium surfactants in aqueous solution. J. Colloid Interface Sci.205 (1998) 245–256. PMid:9735187; 10.1006/jcis.1998.5687Search in Google Scholar PubMed
18. Martín, V. I., Graciani, M. M., Rodríguez, A. and Moyá, M. L.: Kinetic studies in micellar solutions of novel bromide mono- and dimeric surfactants with phenyl and cyclohexyl rings in the head group, Colloid Surf. A409 (2012) 52–60. 10.1016/j.colsurfa.2012.06.002Search in Google Scholar
19. Kim, H. J., Baek, K., Kim, B. K. and Yang, J. W.: Humic substance-enhanced ultrafiltration for removal of cobalt, J. Hazard. Mater.122 (2005) 31–36. PMid:15908112; 10.1016/j.jhazmat.2005.03.043Search in Google Scholar PubMed
20. Kim, H., Baek, K., Lee, J., Iqbal, J. and Yang, J. W.: Comparison of separation methods of heavy metal from surfactant micellar solution for the recovery surfactant, Desalination191 (2006) 186–192. 10.1016/j.desal.2005.09.013Search in Google Scholar
21. Syamal, M., De, S. and Bhattacharya, R. K.: Phenol solubilization by cetylpyridinium chloride micelles in micellar enhanced ultrafiltration, J. Membrane Sci.137 (1997) 99–107. 10.1016/S0376-7388(97)00192-0Search in Google Scholar
22. Tung, C. C., Yang, Y. M., Chang, C. H. and Maa, J. R.: Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants, Waste Manage.22 (2002) 695–701. 10.1016/S0956-053X(02)00049-1Search in Google Scholar
23. Witek, A., Koltuniewicz, A., Kurczewski, B., Radziejowska, M. and Hatalski, M.: Simultaneous removal of phenols and Cr3+ using micellar enhanced ultrafiltration process, Desalination, 191 (2006) 111–116. 10.1016/j.desal.2005.05.024Search in Google Scholar
24. Zeng, G. M., Xu, K., Huang, J. H., Li, X, Fang, Y. Y. and Qu, Y. H.: Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulphone spiral membrane, J. Membrane Sci.310 (2007) 149–160. 10.1016/j.memsci.2007.10.046Search in Google Scholar
25. Purkait, M. K., Gupta, S. D. and De, S.: Separation of aromatic alcohols using micellar- enhanced ultrafiltration and recovery of surfactant, J. Membrane Sci.250 (2005) 47–59. 10.1016/j.memsci.2004.10.014Search in Google Scholar
26. Karande, P., Jain, A., Arora, A., Ho, M. J. and Mitragotri, S.: Synergistic effects of chemical enhancers on skin permeability: a case study of sodium lauroylsarcosinate and sorbitan monolaurate, Eur. J. Pharm. Sci.31 (2007) 1–7. PMid:17368869; 10.1016/j.memsci.2004.10.014Search in Google Scholar
27. Karande, P., Jain, A. and Mitragotri, S.: Discovery of transdermal penetration enhancers by high-throughput screening, Nat. Biotechnol.22 (2004) 192–197. PMid:14704682; 10.1038/nbt928Search in Google Scholar PubMed
28. Dayan, N. and Touitou, E.: Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposome, Biomaterials21 (2000) 1879–1885. 10.1016/S0142-9612(00)00063-6Search in Google Scholar
29. Touitou, E. and Godin, B.: Ethosomes for skin delivery, J. Drug Deliv. Sci. Technol.17 (2007) 303–308. 10.1016/S1773-2247(07)50046-8Search in Google Scholar
30. MustafaM. A. E., OssamaY.A., VivianeF.N. and NawalM.K.: Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm.332 (2007) 1–16. PMid:17222523; 10.1016/j.ijpharm.2006.12.005Search in Google Scholar PubMed
31. Giorgio, G., Colafemmina, G., Mavelli, F., Murgia, S. and Palazzo, G.: The impact of alkanes on the structure of Triton X100 micelles, RSC Adv.6 (2016) 825–836. 10.1039/C5RA21691ESearch in Google Scholar
32. Can, V., Kochovski, Z., Reiter, V., Severin, N., Siebenbürger, M., Kent, B., Just, J., Rabe, J. P., Ballauff, M. and Okay, O.: Nanostructural evolution and self-healing mechanism of micellar hydrogels, Macromolecules49 (2016) 2281–2287. 10.1021/acs.macromol.6b00156Search in Google Scholar
33. Tian, J.-N., Ge, B.-Q., Shen, Y.-F., He, Y.-X. and Chen, Z.-X.: Thermodynamics and structural evolution during a reversible vesicle-micelle transition of a vitamin-derived bolaamphiphile induced by sodium cholate, J. Agric. Fd. Chem.64 (2016) 1977–1988. PMid:26860930; 10.1021/acs.jafc.5b0554Search in Google Scholar
34. Misbah, M. H., Quintanilla, L., Alonso, M. and Rodríguez-Cabello, J. C.: Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel, Polymer81 (2015) 37–44. 10.1016/j.polymer.2015.11.013Search in Google Scholar
35. Sharma, S., Yadav, N., Chowdhury, P. K. and Ganguli, A. K.: Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructure, J. Phys. Chem. B119 (2015) 11295–11306. PMid:26148141; 10.1021/acs.jpcb.5b03063Search in Google Scholar PubMed
36. Yusof, N. S. M. and Khan, M. N.: Kinetic and rheological measurements of the effects of inert 2-, 3- and 4-bromobenzoate ions on the cationic micellar-mediated rate of piperidinolysis of ionized phenyl salicylate, J. Colloid Interface Sci.357 (2011) 121–128. PMid:21333302; 10.1016/j.jcis.2011.01.061Search in Google Scholar PubMed
37. Khan, M. N., Ismail, E. and Yusof, N. S. M.: A new empirical kinetic method for the determination of ion exchange constants for the counterions of cationic micelles: The rate of piperidinolysis and hydrolysis of anionic phenyl salicylate as the kinetic probes. Colloids Surf. A361 (2010) 150–161. 10.1016/j.colsurfa.2010.03.026Search in Google Scholar
38. Khan, M. N. and Ismail, E.: Kinetic study on the effects of sodium benzoate on piperidinolysisof phenyl salicylate in alkaline pure cationic and mixed cationic-nonionic micelles, J. Dispersion Sci. Technol.31 (2010) 314–320. 10.1080/01932690903167558Search in Google Scholar
39. Khan, M. N., Arifin, Z., Ismail, E. and Ali, S. F. M.: Effects of [NaBr] on the rate of intramolecular general basecatalysed reaction of ionized phenyl salicylate (PS–) with n-butylamine and piperidine in the presence of cationic micelles, J. Org. Chem.65 (2000) 1331–1334. PMid:10814092; 10.1021/jo991334dSearch in Google Scholar PubMed
40. Khan, M. N., Ariffin, Z., Lasidek, M. N., Hanifiah, M. A. M. and Alex, G.: Effects of cationic micelles on rate of intramolecular general base-catalyzed aminolysis of ionized phenyl salicylate, Langmuir13 (1997) 3959–3964. 10.1021/la960924tSearch in Google Scholar
41. Khalid, K., Noh, M. A. M., Zain, S. M. and Khan, M. N.: Correlation of kinetic and rheological data for flexible nanoparticle catalysis in the reaction of piperidine with PS–, Catal. Lett.146 (2016) 960–967. 10.1007/s10562-016-1715-8Search in Google Scholar
42. Agarwal, V., Singh, M., McPherson, G., John, V. and Bose, A.: Microstructure evolution in aqueous solutions of cetyl trimethylammonium bromide (CTAB) and phenol derivatives, Colloids Surf. A281 (2006) 246–253. 10.1016/j.colsurfa.2006.02.047Search in Google Scholar
43. Khalid, K., NohM. A. M., Fagge, I. I., Zain, S. M. and KhanM.N.: Effects of cationic nanoparticles (CNP) on counterion binding constant (RXBr) and catalytic constant (kcat) in micellar system, J. Mol. Catal. A423 (2016) 365–370. 10.1016/j.molcata.2016.07.031Search in Google Scholar
44. Marques, E. F., Regev, O., Khan, A. and Lindman, B.: Self-organization of double-chained and pseudodouble-chained surfactants: Counterion and geometry effects, Adv. Colloid Interface Sci.100–102 (2003) 83–104. 10.1016/S0001-8686(02)00068-4Search in Google Scholar
45. BarneyL. B.: A Definition of the degree of ionization of a micelle based on its aggregation number, J. Phys. Chem. B105 (2001) 6798–6804. 10.1021/jp004576mSearch in Google Scholar
46. Magid, L. J.; Han, Z.; Warr, G. G.; Cassidy, M. A.; Butler, P. W. and Hamilton, W. A.: Effect of counterion competition on micellar growth horizons for cetyltrimethylammonium micellar surface: Electrostatic and specific binding, J. Phys. Chem. B101 (1997) 7919–7927. 10.1021/jp970864fSearch in Google Scholar
47. Singh, M., Ford, C., Agarwal, V., Fritz, G., Bose, A., John, V. T. and McPherson, G. L.: Structural evolution in cationic micelles upon incorporation of a polar organic dopant, Langmuir20 (2004) 9931–9937. PMid:15518477; 10.1021/la048967uSearch in Google Scholar PubMed
48. Gamboa, C., Rios, H. and Sepulveda, L.: Effect of the nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium micelles, J. Phys. Chem.93 (1989) 5540–5543. 10.1021/j100351a043Search in Google Scholar
49. Aivaliotis, M., Samolis, P., Neofotistou, E., Remigy, H., Rizos, A. K. and Tsiotis, G.: Molecular size determination of a membrane protein in surfactants by light scattering, Biochim. Biophys. Acta1615 (2003) 69–76. 10.1016/S0005-2736(03)00208-6Search in Google Scholar
50. Zulauf, M. and Rosenbusch, J. P.: Micelle clusters of octylhydroxyollgo(oxyethylenes), J. Phys. Chem.87 (1983) 856–862. 10.1021/j100228a032Search in Google Scholar
51. Stachowiak, J. C., Richmond, D. L., Li, T. H., Liu, A. P., Parekh, S. H. and Fletcher, D. A.: Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Nat. Acad. Sci. USA105 (2008) 4697–4702. PMid:18353990; 10.1073/pnas.0710875105Search in Google Scholar PubMed PubMed Central
52. Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P. and Zare, R. N.: Rapid preparation of giant unilamellar vesicles. Proc. Nat. Acad. Sci. USA93 (1996) 11443–11447. PMid:8876154; 10.1073/pnas.93.21.11443Search in Google Scholar PubMed PubMed Central
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Enzymes
- Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive
- Study on the Interaction Between Cellulase and Surfactants
- Physical Chemistry
- Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane
- Synergistic Effect of Cationic Surfactants on the Rheological Behavior of Erucyl Amidosulfobetaine
- Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS− in Colloidal System
- Application
- Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
- Environmental Chemistry
- Inhibition of Calcium Carbonate Scale Using an Environmental Friendly Scale Inhibitor
- Novel Surfactants
- Study on the Properties of Mixed Micelles of Disodium Salt of 3-({2-[(2-Carboxy-ethyl)-dodecanoyl-amino]-ethyl}-dodecanoyl-amino)-propionic Acid in Solution Systems
- Synthesis
- Macrocyclic Schiff Base Metal Complexes Derived from Isatin: Structural Activity Relationship and DFT Calculations
- Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments