Home Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites

  • Wei Gao , Lili Ding and Yanchao Zhu
Published/Copyright: May 8, 2017
Become an author with De Gruyter Brill

Abstract

In order to improve the dispersion and increase the compatibility between CaCO3 nanoparticles and a polyethylene terephthalate (PET) matrix, hydrophobic calcium carbonate (CaCO3) nanoparticles were successfully prepared via a carbonization reaction with stearic acid (SA) as the modifying agent. PET/CaCO3 nanocomposites were prepared by further in situ polymerization of purified terephthalic acid (PTA), ethylene glycol (EG) and CaCO3 nanoparticles. The surface modification of CaCO3, the microstructure and the properties of nanocomposites were investigated by water contact angles measurements TEM, FTIR, XRD, SEM, TGA and DSC. SEM examination of the fractured surfaces of nanocomposites showed that CaCO3 modified by SA achieved well dispersed in the PET matrix. Moreover, compared to the nanocomposite filled with the blank CaCO3, the resulting nanocomposite filled with the modified CaCO3 exhibit a better thermal stability and a superior crystallization property.

Kurzfassung

Zur Verbesserung der Dispergierung und zur Steigerung der Kompatibilität zwischen CaCO3-Nanopartikeln und der Polyethylenterephthalat-Matrix (PET-Matrix) wurden hydrophobe Calciumcarbonat-Nanopartikel (CaCO3-Nanopartikel) erfolgreich über die Karbonisierung mit Stearinsäure (SA) als Modifizierungsmittel hergestellt. Die Nanokomposite aus PET/CaCO3 wurde durch weitere in-situ-Polymerisation von gereinigter Terephthalsäure (PTA), Ethylenglykol (EG) und CaCO3-Nanopartikel hergestellt. Die Oberflächenmodifikation des CaCO3, die Mikrostruktur und die Eigenschaften der Nanokomposite wurden mit Hilfe von Kontaktwinkelmessungen mit Wasser, TEM, FTIR, XRD, SEM, TGA untersucht. Die rasterelektronenmikroskopische Untersuchung der Bruchflächen der Nanokomposite zeigte, dass das mit SA modifizierte CaCO3 in der PET-Matrix gut dispergiert war. Darüber hinaus besitzt der mit dem modifizierten CaCO3 gefüllte Nanokomposit gegenüber dem Nanokomposit, der mit nicht modifiziertem CaCO3 gefüllt ist, eine bessere thermische Stabilität und eine hervorragende Kristallisationsfähigkeit.


*Correspondence address, Mr. Wei Gao, College of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, P.R. China, E-Mail:

Wei Gao: College of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, PR China. E-mail address:

Lili Ding: College of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, PR China. E-mail address:

Yanchao Zhu: College of Chemistry, Jilin University, Changchun 130012, PR China. E-mail address:


References

1. Chen, X., Zhu, Y., Zhou, B., Guo, Y., Gao, W., Ma, Y., Guan, S., Wang, L. and Wang, Z.: Hydrophilic CaCO3 nanoparticles designed for poly (ethylene terephthalate), Powder Technol.204 (2010) 2126. 10.1016/j.powtec.2010.07.002Search in Google Scholar

2. Zha, W., Choi, S., Lee, K. M. and Han, C. D.: Dispersion characteristics of organoclay in nanocomposites based on end-Functionalized homopolymer and block copolymer, Macromolecules38 (2005) 84188429. 10.1021/ma050803cSearch in Google Scholar

3. Uddin, M. F. and Sun, C. T.: Improved dispersion and mechanical properties of hybrid nanocomposites, Compos. Sci. Technol.70 (2010) 223230. 10.1016/j.compscitech.2009.09.017Search in Google Scholar

4. Chae, D. W. and Kim, B. C.: Thermal and rheological properties of highly concentrated PET composites with ferrite nanoparticles, Compos. Sci. Technol.67 (2007) 13481352. 10.1016/j.compscitech.2006.09.018Search in Google Scholar

5. Avolio, R., Gentile, G., Avella, M., Carfagna, C. and Errico, M. E.: Polymer–filler interactions in PET/CaCO3 nanocomposites: Chain ordering at the interface and physical properties, Eur. Polym. J.49 (2013) 419427. 10.1016/j.eurpolymj.2012.10.008Search in Google Scholar

6. Avella, M., Errico, M. E. and Martuscelli, E.: Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process, Nano Letters1 (2001) 213217. 10.1021/nl015518vSearch in Google Scholar

7. Chatterjee, A. and Mishra, S.: Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate (CaCO3)/poly(methyl methacrylate) core–shell nanoparticles, Particuology11 (2013) 760767. 10.1016/j.partic.2012.11.005Search in Google Scholar

8. Bhanvase, B. A., Pinjari, D. V., Gogate, P. R., Sonawane, S. H. and Pandit, A. B.: Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization, Chem. Eng. Prog.50 (2011) 11601168. 10.1016/j.cep.2011.09.002Search in Google Scholar

9. Karamipour, S., Ebadi-Dehaghani, H., Ashouri, D. and Mousavian, S.: Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models, Polym. Test.30 (2011) 110117. 10.1016/j.polymertesting.2010.10.009Search in Google Scholar

10. Lu, M., Zhou, W. and Mai, K.: Effect of nano-CaCO3 on polymorphic behavior in syndiotactic polystyrene for non-isothermal crystallization, Polymer47 (2006) 16611666. 10.1016/j.polymer.2006.01.039Search in Google Scholar

11. Lin, Y., Chen, H., Chan, C. and Wu, J.: Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites, Eur. Polym. J.47 (2011) 294304. 10.1016/j.eurpolymj.2010.12.004Search in Google Scholar

12. Lin, Y., Chen, H., Chan, C. and Wu, J.: Nucleating effect of calcium stearate coated CaCO3 nanoparticles on polypropylene, J. Colloid Interface Sci.354 (2011) 570576. 10.1016/j.jcis.2010.10.069Search in Google Scholar PubMed

13. Malinova, K., Gunesch, M., Pancera, S. M., Wengeler, R., Rieger, B. and Volkmer, D.: Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique, J. Colloid Interface Sci.374 (2012) 6169. 10.1016/j.jcis.2012.02.011Search in Google Scholar PubMed

14. Du, L., Wang, Y. and Luo, G.: In situ preparation of hydrophobic CaCO3 nanoparticles in a gas–liquid microdispersion process, Particuology11 (2013) 421427. 10.1016/j.partic.2012.07.009Search in Google Scholar

15. Haggenmueller, R., Du, F., Fischer, J. E. and Winey, K. I.: Interfacial in situ polymerization of single wall carbon nanotube/nylon 66 nanocomposites, Polymer47 (2006) 23812388. 10.1016/j.polymer.2006.01.087Search in Google Scholar

16. Prasad, K., Sonawane, S., Zhou, M. and Ashokkumar, M.: Muthupandian Ashokkumar, Ultrasound assisted synthesis and characterization of poly(methyl methacrylate)/CaCO3 nanocomposites, Chem. Eng. J.219 (2013) 254261. 10.1016/j.cej.2013.01.012Search in Google Scholar

17. Kiss, A., Fekete, E. and Pukánszky, B.: Aggregation of CaCO3 particles in PP composites: Effect of surface coating, Compos. Sci. Technol.67 (2007) 15741583. 10.1016/j.compscitech.2006.07.010Search in Google Scholar

18. Ma, C. G., Mai, Y. L., Rong, M. Z., Ruan, W. H. and Zhang, M. Q.: Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites, Compos. Sci. Technol.67 (2007) 29973005. 10.1016/j.compscitech.2007.05.022Search in Google Scholar

19. Berkowitz, S.: Viscosity-molecular weight ralationships for poly(ethylene terephthalate) in hexafluoroisopropanol-pentafluorophenol using SEC-LALLS, J. Appl. Polym. Sci.29 (1984) 43534361. 10.1002/app.1984.070291264Search in Google Scholar

20. Aquilano, D., Calleri, M., Natoli, E., Rubbo, M. and Sgualdino, G.: The 1 0 4 cleavage rhombohedron of calcite: theoretical equilibrium properties, Mater. Chem. Phys.66 (2000) 159163. 10.1016/S0254-0584(00)00331-XSearch in Google Scholar

21. He, J. P., Li, H. M., Wang, X. Y. and Gao, Y.: In situ preparation of poly(ethylene terephthalate)–SiO2 nanocomposites, Eur. Polym. J.42 (2006) 11281134. 10.1016/j.eurpolymj.2005.11.002Search in Google Scholar

22. Lee, H. J., Oh, S. J., Choi, J. Y., Kim, J. W., Han, J. W., Tan, L. S. and Baek, J. B.: In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites, Chem. Mater.17 (2005) 50575064. 10.1021/cm051218tSearch in Google Scholar

23. Vassiliou, A. A., Chrissafis, K. and Bikiaris, D. N.: In situ prepared PET nanocomposites: Effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics, Thermochim. Acta500 (2010) 2129. 10.1016/j.tca.2009.12.005Search in Google Scholar

24. Vassiliou, A. A., Chrissafis, K. and Bikiaris, D. N.: Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes, J. Therm. Anal. Calorim.100 (2010) 10631071. 10.1007/s10973-009-0426-4Search in Google Scholar

25. Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W. and Douglas, J.: Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites, Macromol. Rapid. Commun.23 (2002) 761765. 10.1002/1521-3927(20020901)23:13<761::AID-MARC761>3.0.CO;2-KSearch in Google Scholar

26. Chrissafisa, K., Roumeli, E., Paraskevopoulos, K. M., Nianias, N. and Bikiaris, D. N.: Effect of different nanoparticles on thermal decomposition of poly(propylene sebacate)/nanocomposites: Evaluation of mechanisms using TGA and TG–FTIR–GC/MS, J. Anal. Appl. Pyrol.96 (2012) 9299. 10.1016/j.jaap.2012.03.010Search in Google Scholar

27. Carrasco, F., Gámez-Pérez, J., Santana, O. O. and Maspoch, M. L.: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition, Chem. Eng. J.178 (2011) 451460. 10.1016/j.cej.2011.10.036Search in Google Scholar

28. Burgaz, E., Yazici, M., Kapusuz, M., Alisir, S. H. and Ozcan, H.: Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks, Thermochim. Acta575 (2014) 159166. 10.1016/j.tca.2013.10.032Search in Google Scholar

29. Friedrich, K., Lu, Z. and Häger, A. M.: Overview on polymer composites for friction and wear application, J. Theoret. Appl. Fract. Mech19 (1993) 111. 10.1016/0167-8442(93)90029-BSearch in Google Scholar

30. Avella, M., Errico, M. E., Martelli, S. and Martuscelli, E.: Preparation methodologies of polymer matrix nanocomposites, Appl. Organomet. Chem.15 (2001) 435439. 10.1002/aoc.168Search in Google Scholar

31. Lorenzo, M. L. D., Errico, M. E. and Avella, M.: Thermal and morphological characterizatic of poly(ethylene terephthalate)/CaCO3 nanocomposites, J. Mater. Sci.37 (2002) 23512358. 10.1023/A:1015358425449Search in Google Scholar

32. Xanthos, M., Baltzis, B. C. and Hsu, P. P.: Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate), J. Appl. Polym. Sci.64 (1997) 14231435. 10.1002/(SICI)1097-4628(19970516)64:7<1423::AID-APP22>3.0.CO;2-WSearch in Google Scholar

Received: 2016-02-18
Accepted: 2016-04-19
Published Online: 2017-05-08
Published in Print: 2017-05-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110490/html
Scroll to top button