Abstract
The functionalisation of C60 fullerene with 2,3-dimethylene-1,4-dioxane (I) and 2,5-dioxabicyclo [4.2.0]octa-1(8),6-diene (II) was investigated by the use of density functional theory calculations in terms of its energetic, structural, field emission, and electronic properties. The functionalisation of C60 with I was previously reported experimentally. The I and II molecules are preferentially attached to a C—C bond shared and located between two hexagons of C60 via [4+2] and [2+2] cycloadditions bearing reaction energies of −15.9 kcal mol−1 and −72.4 kcal mol−1, respectively. The HOMO-LUMO energy gap and work function of C60 are significantly reduced following completion of the reactions. The field electron emission current of the C60 surface will increase after functionalisation of either the I or II molecule.
[1] Asaka, K., Nakayama, T., Miyazawa, K., & Saito, Y. (2012). Structures and field emission properties of heat-treated C60 fullerene nanowhiskers. Carbon, 50, 1209–1215. DOI: 10.1016/j.carbon.2011.10.035. http://dx.doi.org/10.1016/j.carbon.2011.10.03510.1016/j.carbon.2011.10.035Search in Google Scholar
[2] Beck, M. T., Szépvölgyi, J., Szabó, P., & Jakab, E. (2001). Heterogeneous Diels-Alder reaction between cyclopentadiene and different solid carbons. Carbon, 39, 147–149. DOI: 10.1016/s0008-6223(00)00180-9. http://dx.doi.org/10.1016/S0008-6223(00)00180-910.1016/S0008-6223(00)00180-9Search in Google Scholar
[3] Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012a). Theoretical investigation of C60 fullerene functionalization with tetrazine. Computional and Theoretical Chemistry, 992, 164–167. DOI: 10.1016/j.comptc.2012.05.039. http://dx.doi.org/10.1016/j.comptc.2012.05.03910.1016/j.comptc.2012.05.039Search in Google Scholar
[4] Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012b). Functionalization of [60] fullerene with butadienes: A DFT study. Applied Surface Science, 258, 8980–8984. DOI: 10.1016/j.apsusc.2012.05.134. http://dx.doi.org/10.1016/j.apsusc.2012.05.13410.1016/j.apsusc.2012.05.134Search in Google Scholar
[5] Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012c). Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sensors and Actuators B: Chemical, 171–172, 846–852. DOI: 10.1016/j.snb.2012.05.082. http://dx.doi.org/10.1016/j.snb.2012.05.08210.1016/j.snb.2012.05.082Search in Google Scholar
[6] Ben Messaouda, M., Moussa, F., Tangour, B., Szwarc, H., & Abderrabba, M. (2007). Addition of bio-organic compounds on C60: A semi-empirical investigation of its reactivity with glycine. Journal of Molecular Structure: THEOCHEM, 809, 153–159. DOI: 10.1016/j.theochem.2007.01.016. http://dx.doi.org/10.1016/j.theochem.2007.01.01610.1016/j.theochem.2007.01.016Search in Google Scholar
[7] Champeil, E., Crean, C., Larraya, C., Pescitelli, G., Proni, G., & Ghosez, L. (2008). Functionalization of C60 via organometallic reagents. Tetrahedron, 64, 10319–10330. DOI: 10.1016/j.tet.2008.08.017. http://dx.doi.org/10.1016/j.tet.2008.08.01710.1016/j.tet.2008.08.017Search in Google Scholar
[8] Chen, L., Xu, C., Zhang, X. F., & Zhou, T. (2009). Raman and infrared-active modes in MgO nanotubes. Physica E, 41, 852–855. DOI: 10.1016/j.physe.2009.01.006. http://dx.doi.org/10.1016/j.physe.2009.01.00610.1016/j.physe.2009.01.006Search in Google Scholar
[9] Contreras, M. L., Avila, D., Alvarez, J., & Rozas, R. (2010). Exploring the structural and electronic properties of nitrogencontaining exohydrogenated carbon nanotubes: a quantum chemistry study. Structural Chemistry, 21, 573–581. DOI: 10.1007/s11224-010-9587-9. http://dx.doi.org/10.1007/s11224-010-9587-910.1007/s11224-010-9587-9Search in Google Scholar
[10] Gügel, A., Kraus, A., Spickermann, J., Belik, P., & Müllen, K. (1994). Buckminsterfullerene adducts from ortho-quinodimethanes. Angewandte Chemie International Edition in English, 33, 559–561. DOI: 10.1002/anie.199405591. http://dx.doi.org/10.1002/anie.19940559110.1002/anie.199405591Search in Google Scholar
[11] Hedberg, K., Hedberg, L., Bethune, D. S., Brown, C. A., Dorn, H. C., Johnson, R. D., & De Vries, M. (1992). Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science, 254, 410–412. DOI: 10.1126/science.254.5030.410. http://dx.doi.org/10.1126/science.254.5030.41010.1126/science.254.5030.410Search in Google Scholar
[12] Hendersen, C. C., & Cahill, P. A. (1993). C60H2: Synthesis of the simplest C60 hydrocarbon derivative. Science, 259, 1885–1887. DOI: 10.1126/science.259.5103.1885. http://dx.doi.org/10.1126/science.259.5103.188510.1126/science.259.5103.1885Search in Google Scholar
[13] Hensley, E. B. (1961). Thermionic emission constants and their interpretation. Journal of Applied Physics, 32, 301–308. DOI: 10.1063/1.1735994. http://dx.doi.org/10.1063/1.173599410.1063/1.1735994Search in Google Scholar
[14] Hirsch, A. (1994). The chemistry of the fullerenes. Stuttgart, Germany: Thieme. http://dx.doi.org/10.1002/978352761921410.1002/9783527619214Search in Google Scholar
[15] Hu, Y. H., & Ruckenstein, E. (2008). Complexes of a biomolecule and a C60 cage. Journal of Molecular Structure: THEOCHEM, 850, 67–71. DOI: 10.1016/j.theochem.2007.10.024. http://dx.doi.org/10.1016/j.theochem.2007.10.02410.1016/j.theochem.2007.10.024Search in Google Scholar
[16] Huang, X., Tu, Z., Ma, Z., & Wu, S. (2011). Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs. Chemical Papers, 65, 324–331. DOI: 10.2478/s11696-011-0017-2. http://dx.doi.org/10.2478/s11696-011-0017-210.2478/s11696-011-0017-2Search in Google Scholar
[17] Komatsu, K., Murata, Y., Sugita, N., Takeuchi, K., & Wan, T. S. M. (1993). Use of naphthalene as a solvent for selective formation of the 1:1 Diels-Alder adduct of C60 with anthracene. Tetrahedron Letters, 34, 8473–8476. DOI: 10.1016/s0040-4039(00)61362-x. http://dx.doi.org/10.1016/S0040-4039(00)61362-X10.1016/S0040-4039(00)61362-XSearch in Google Scholar
[18] Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1, 104–113. DOI: 10.1016/s0031-8914(34)90011-2. (in German) http://dx.doi.org/10.1016/S0031-8914(34)90011-210.1016/S0031-8914(34)90011-2Search in Google Scholar
[19] Krätler, B., & Puchberger, M. (1993). Über Diels-Alder-Reaktionen des C60-Fullerens vorläufige Mitteilung. Helvetica Chimica Acta, 76, 1626–1631. DOI: 10.1002/hlca.19930760419. (in German) http://dx.doi.org/10.1002/hlca.1993076041910.1002/hlca.19930760419Search in Google Scholar
[20] Kreher, D., Liu, S. G., Cariou, M., Hudhomme, P., Gorgues, A., Mas, M., Veciana, J., & Rovira, C. (2001). Novel [60]fullerene-TTF cyclohexene fused polyadducts: unprecedented tri- and tetra-Diels-Alder adducts of dimethylidene[2H]tetrathiafulvalenes with C60. Tetrahedron Letters, 42, 3447–3450. DOI: 10.1016/s0040-4039(01)00494-4. http://dx.doi.org/10.1016/S0040-4039(01)00494-410.1016/S0040-4039(01)00494-4Search in Google Scholar
[21] Lawson, D. B., & Walker, A. (2012). Cycloaddition of ethene on a series of single-walled carbon nanotubes. Computational and Theoretical Chemistry, 981, 31–37. DOI: 10.1016/j.comptc.2011.11.040. http://dx.doi.org/10.1016/j.comptc.2011.11.04010.1016/j.comptc.2011.11.040Search in Google Scholar
[22] Lee, S. M., Nicholls, R. J., Nguyen-Manh, D., Pettifor, D. G., Briggs, G. A. D., Lazar, S., Pankhurst, D. A., & Cockayne, D. J. H. (2005). Electron energy loss spectra of C60 and C70 fullerenes. Chemical Physics Letters, 404, 206–211. DOI: 10.1016/j.cplett.2005.01.089. http://dx.doi.org/10.1016/j.cplett.2005.01.08910.1016/j.cplett.2005.01.089Search in Google Scholar
[23] Li, S. S. (2006). Semiconductor physical electronics (2nd ed.). New York, NY, USA: Springer. http://dx.doi.org/10.1007/0-387-37766-210.1007/0-387-37766-2Search in Google Scholar
[24] Martin, N. M., Luzan, S. M., & Talyzin, A. V. (2010). High-temperature reactions of C60 with polycyclic aromatic hydrocarbons. Chemical Physics, 368, 49–57. DOI: 10.1016/j.chemphys.2009.12.008. http://dx.doi.org/10.1016/j.chemphys.2009.12.00810.1016/j.chemphys.2009.12.008Search in Google Scholar
[25] Murata, Y., Kato, N., Fujiwara, K., & Komatsu, K. (1999). Solid-state [4 + 2] cycloaddition of fullerene C60 with condensed aromatics using a high-speed vibration milling technique. The Journal of Organic Chemistry, 64, 3483–3488. DOI: 10.1021/jo990013z. http://dx.doi.org/10.1021/jo990013z10.1021/jo990013zSearch in Google Scholar PubMed
[26] O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839–845. DOI: 10.1002/jcc.20823. http://dx.doi.org/10.1002/jcc.2082310.1002/jcc.20823Search in Google Scholar PubMed
[27] Parr, R. G., von Szentpály, L., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922–1924. DOI: 10.1021/ja983494x. http://dx.doi.org/10.1021/ja983494x10.1021/ja983494xSearch in Google Scholar
[28] Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L. T., Gelmont, M., Olevano, D., & von Issendorff, B. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407, 60–63. DOI: 10.1038/35024037. http://dx.doi.org/10.1038/3502403710.1038/35024037Search in Google Scholar PubMed
[29] Ren, X. Y., Jiang, C. Y., Wang, J., & Liu, Z. Y. (2008). Endohedral complex of fullerene C60 with tetrahedrane, C4H4@C60. Journal of Molecular Graphics and Modelling, 27, 558–562. DOI: 10.1016/j.jmgm.2008.09.010. http://dx.doi.org/10.1016/j.jmgm.2008.09.01010.1016/j.jmgm.2008.09.010Search in Google Scholar PubMed
[30] Robles-Nuñez, J., Chiñas-Castillo, F., Sanchez-Rubio, M., Lara-Romero, J., Huirache-Acuña, R., Jimenez-Sandoval, S., & Alonso-Nuñez, G. (2012). Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes. Chemical Papers, 66, 1130–1136. DOI: 10.2478/s11696-012-0227-2. http://dx.doi.org/10.2478/s11696-012-0227-210.2478/s11696-012-0227-2Search in Google Scholar
[31] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-310.2478/s11696-009-0061-3Search in Google Scholar
[32] Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery, J. A., Jr. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. DOI: 10.1002/jcc.540141112. http://dx.doi.org/10.1002/jcc.54014111210.1002/jcc.540141112Search in Google Scholar
[33] Skanji, R., Ben Messaouda, M., Zhang, Y., Abderrabba, M., Szwarc, H., & Moussa, F. (2012). Sequential photo-addition of glycine methyl-ester to [60]fullerene. Tetrahedron, 68, 2713–2718. DOI: 10.1016/j.tet.2012.01.049. http://dx.doi.org/10.1016/j.tet.2012.01.04910.1016/j.tet.2012.01.049Search in Google Scholar
[34] Tumareva, T. A., Sominskii, G. G., & Polyakov, A. S. (2002). Formation on field emitters coated with fullerenes of microformations producing ordered emission images. Technical Physics, 47, 250–254. DOI: 10.1134/1.1451976. http://dx.doi.org/10.1134/1.145197610.1134/1.1451976Search in Google Scholar
[35] Tumareva, T. A., Sominskii, G. G., Svetlov, I. A., & Panteleev, I. S. (2012). Use of ion processing to improve the quality of fullerene-coated field emitters. Technical Physics, 57, 113–118. DOI: 10.1134/s1063784212010252. http://dx.doi.org/10.1134/S106378421201025210.1134/S1063784212010252Search in Google Scholar
[36] Torres-Garcia, G., & Mattay, J. (1996). Exohedral functionalization of [60]fullerene by [4+2] cycloadditions. Diels-Alder reactions of [60]fullerene with electron rich 2,3-dioxysubstituted-1,3-butadienes. Tetrahedron, 52, 5421–5426. DOI: 10.1016/0040-4020(96)00172-x. http://dx.doi.org/10.1016/0040-4020(96)00172-X10.1016/0040-4020(96)00172-XSearch in Google Scholar
[37] Wanbayor, R., & Ruangpornvisuti, V. (2012). A periodic DFT study on binding of Pd, Pt and Au on the anatase TiO2 (0 0 1) surface and adsorption of CO on the TiO2 surfacesupported Pd, Pt and Au. Applied Surface Science, 258, 3298–3301. DOI: 10.1016/j.apsusc.2011.11.085. http://dx.doi.org/10.1016/j.apsusc.2011.11.08510.1016/j.apsusc.2011.11.085Search in Google Scholar
[38] Wang, Q., & Zheng, J. (2010). Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film. Chemical Papers, 64, 566–572. DOI: 10.2478/s11696-010-0053-3. http://dx.doi.org/10.2478/s11696-010-0053-310.2478/s11696-010-0053-3Search in Google Scholar
[39] Xu, X., Shang, Z., Li, R., Cai, Z., & Zhao, X. (2008). Theoretical studies on the mechanism of 1,3-dipolar cycloaddition of methyl azide to [50]fullerene. Journal of Molecular Structure: THEOCHEM, 864, 6–13. DOI: 10.1016/j.theochem.2008.05.022. http://dx.doi.org/10.1016/j.theochem.2008.05.02210.1016/j.theochem.2008.05.022Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide
Articles in the same Issue
- Analytical protocol for investigation of zinc speciation in plant tissue
- Assessment of waxy and non-waxy corn and wheat cultivars as starch substrates for ethanol fermentation
- Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts
- Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves
- Determination of limiting current density for different electrodialysis modules
- Dyeing of multiple types of fabrics with a single reactive azo disperse dye
- Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought
- Ultra-trace determination of Pb(II) and Cd(II) in drinking water and alcoholic beverages using homogeneous liquid-liquid extraction followed by flame atomic absorption spectrometry
- Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes
- Inhibition of copper corrosion in acidic sulphate media by eco-friendly amino acid compound
- Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture
- Total synthesis of cannabisin F
- Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents
- Microwave-assisted synthesis and antibacterial activity of derivatives of 3-[1-(4-fluorobenzyl)-1H-indol-3-yl]-5-(4-fluorobenzylthio)-4H-1,2,4-triazol-4-amine
- DFT study on [4+2] and [2+2] cycloadditions to [60] fullerene
- Efficient thioacetalisation of carbonyl compounds
- Trimerization of aldehydes with one α-hydrogen catalyzed by sodium hydroxide