Home Combining complementary techniques to study precipitates in steels
Article
Licensed
Unlicensed Requires Authentication

Combining complementary techniques to study precipitates in steels

  • Michael Bischof EMAIL logo , Stefan Erlach , Peter Staron , Harald Leitner , Helmut Clemens and Christina Scheu
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

Understanding the precipitation reactions is of vital importance for the development of advanced steels. A comprehensive characterization of all phases, however, is still demanding in these complex materials. Transmission electron microscopy is widely used, but the prevailing ferromagnetism makes the analysis of small precipitates difficult. Furthermore, the investigated specimen volume is small, making statistically relevant findings time-consuming. Therefore, in our study, transmission electron microscopy measurements are complemented by small-angle neutron scattering and atom-probe field ion microscopy. These methods were used to characterize the precipitates in a model steel which hardens by secondary hardening carbides and an intermetallic NiAl-based phase. Assets and drawbacks of each method are discussed and it will be shown that an appropriate combination of the differently obtained findings leads to a detailed description of the precipitation behavior.


Michael Bischof Department of Physical Metallurgy and Materials Testing Montanuniversität Leoben Franz Josef-Straße 18, A-8700 Leoben, Austria Tel.: +43 3842 402 4204 Fax: +43 3842 402 4202

Dedicated to Professor Dr. Dr. h. c. Hein Peter Stüwe on the occasion of his 75th birthday


References

[1] H. Berns, P. Dydra, F. Wendel: Steel Research 56 (1985) 167.10.1002/srin.198500615Search in Google Scholar

[2] D. Caliskanoglu: Ph.D. Thesis, Montanuniversität, Leoben (2002).Search in Google Scholar

[3] R. Ebner, H. Leitner, D. Caliskanoglu, S. Marsoner, F. Jeglitsch: Z. Metallk. 92 (2001) 820.10.1515/ijmr-2001-0149Search in Google Scholar

[4] D.B. Williams, C.B. Carter: Transmission Electron Microscopy II (Diffraction), Plenum Press, New York (1996) 253.10.1007/978-1-4757-2519-3Search in Google Scholar

[5] RC. Thomson: Mater. Characterization 44 (2000) 219.10.1016/S1044-5803(99)00061-3Search in Google Scholar

[6] M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith: Atom Probe Field Ion Microscopy, Clarendon Press, Oxford (1996) 476-483, 377-426.10.1093/oso/9780198513872.005.0001Search in Google Scholar

[7] AJ. Allen, D. Gavillet, J.R. Weertman: Acta metall. mater. 41 (1993) 1869.10.1016/0956-7151(93)90207-9Search in Google Scholar

[8] M.H. Mathon, Y. de Carlan, G. Goeffroy, X. Averty, A. Alame, C.H. de Novion: J. Nucl. Mater. 312 (2003) 236.10.1016/S0022-3115(02)01630-6Search in Google Scholar

[9] S. Erlach, F. Danoix, D. Lemarchand, H. Leitner, M. Bischof, I. Siller, H. Clemens: Proceedings of the MS& T meeting, New Orleans, Louisiana (2004) 633.Search in Google Scholar

[10] A. Strecker, U. Salzberger, J. Mayer: Prakt. Metallogr. 30 (1993) 482.10.1515/pm-1993-301002Search in Google Scholar

[11] E. Bèmont, A. Bostel, M. Bouet, G Da Costa, S. Chambreland, B. Deconihout, K. Hono: Ultramicroscopy 95 (2003) 231.10.1016/S0304-3991(02)00321-2Search in Google Scholar

[12] A. Heinrich, T. AI Kassab, R. Kirchheim: Mater. Sei. and Eng. A 353 (2003) 92.10.1016/S0921-5093(02)00673-1Search in Google Scholar

[13] D. Vaaumousse, A. Cerezo, PJ. Warren: Ultramicroscopy 95 (2003) 215.10.1016/S0304-3991(02)00319-4Search in Google Scholar

[14] G. Gültz, H. Kronmüller, A. Seeger, H. Scheuer, W. Schmatz: Phil. Mag. A 54 (1986) 213.10.1080/01418618608242896Search in Google Scholar

[15] J. Weissmüller, A. Michels, J.G. Barker, A. Wiedenmann, U. Erb, RD. ShuU: Phys. Rev. B 63 (2001) 214414.10.1103/PhysRevB.63.214414Search in Google Scholar

[16] G. Kostorz, in: G. Kostorz, H. Herman (Eds.), Treatise on Materials Science and Technology, Vol. 15: Neutron scattering (1979) 227.10.1016/B978-0-12-341815-9.50013-6Search in Google Scholar

[17] G.E. Bacon: Neutron Diffraction, 3rd edn., Oxford Univ. Press, Oxford (1975).Search in Google Scholar

[18] O. Glatter: Appl. Cryst. 13 (1980) 7.10.1107/S0021889880011429Search in Google Scholar

[19] S. Kolesar: Ph.D. Thesis, Northwestern University, Evanston (1971)49-50.Search in Google Scholar

[20] B. Sonderegger, M. Bischof, E. Kozeschnik, H. Leitner, H. Clemens, J. Svoboda, F.D. Fischer, in: J.M. Howe, D.E. Laughlin, J.K. Lee, DJ. Srolovitz, U. Dahmen (Eds.), Proceedings of the PTM Meeting, Phoenix, Arizona, 2005, to be published.Search in Google Scholar

Received: 2005-06-22
Accepted: 2005-06-25
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Kösterpreis
  3. Award/Preisverleihung
  4. Editorial
  5. Editorial
  6. Articles Basic
  7. Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
  8. Application of factor analysis in electron spectrometry (AES, XPS) for materials science
  9. Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components
  10. Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
  11. Articles Applied
  12. Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering
  13. Local texture and back-end defect in hot extruded AZ91 magnesium alloy
  14. A comparison of thermal stability in nanocrystalline Ni- and Co-based materials
  15. Microstructure and phase formation of Heusler thin film compounds
  16. Correlation between the average composition of coherent superlattice and the GMR properties of electrodeposited Co–Cu/Cu multilayers
  17. Articles Basic
  18. Towards a description of complex pearlite structures
  19. Modeling of axial strain in free-end torsion of textured copper
  20. Vacancies in plastically deformed copper
  21. An analytic and generalized formulation of the sin2 ψ-method
  22. Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion
  23. Articles Applied
  24. The local deformation behaviour of MMCs – an experimental study
  25. X-ray elastic constants determined by the combination of sin2 ψ and substrate-curvature methods
  26. Combining complementary techniques to study precipitates in steels
  27. Precipitation hardening in Mg–Zn–Sn alloys with minor additions of Ca and Si
  28. Notifications/Mitteilungen
  29. Personal
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0185/html
Scroll to top button