Home Technology Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
Article
Licensed
Unlicensed Requires Authentication

Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases

  • Sibylle Gemming EMAIL logo , Matthias Lehmann and Gotthard Seifert
Published/Copyright: February 16, 2022

Abstract

The structural prerequisites are investigated, which make star-shaped molecules suitable precursors for the formation of columnar liquid-crystalline phases. Electronic structure calculations on smaller mesogens show that not all conformers exhibit the atomistic structure, the stability against distortion, and additional dipole moments, which favour columnar stacking. For the presently studied compounds with short terminating alkyl chains, the calculations indicate that the steric factor becomes dominant with increasing star size. Thus, the optimised geometric structures were employed to generate a simplified mathematical model of the structures, which accounts only for the steric interaction in the larger stars. With the help of these diagrams, the most common conformers of star-shaped molecules can be derived in a systematic fashion.


Dr. Sibylle Gemming Institut für Physikalische Chemie und Elektrochemie Technische Universität Dresden, D-01062 Dresden, Germany Tel.: +49 351 463 39449 Fax: +49 351 463 35953

Dedicated to Professor Dr. Dr. h. c. Klaus Wetzig on the occasion of his 65th birthday


References

[1] A.N. Cammidge, R.J. Bushby, in: D. Demus, J.W. Goodby, G.W. Gray, H.-W. Spiess, V. Vill (Eds.), Handbook of Liquid Crystals, Vol. 2b, Wiley-VCH, Weinheim (1998) 693.Search in Google Scholar

[2] M. O’Neill, S.M. Kelly: Adv. Mater. 15 (2003) 1135.10.1002/adma.200300009Search in Google Scholar

[3] I. Seguy, P. Destruel, H. Bock: Synth. Met. 111 (2000) 15.10.1016/S0379-6779(99)00405-1Search in Google Scholar

[4] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie: Science 293 (2001) 1119.10.1126/science.293.5532.1119Search in Google Scholar PubMed

[5] W. Pisula, A. Menon, M. Stepputant, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Müllen: Adv. Mater. 17 (2005) 684.10.1002/adma.200401171Search in Google Scholar

[6] M. Lehmann, V. Lemaur, J. Cornil, J.-L. Brédas, S. Goddard, I. Grizzi, Y. Geerts: Tetrahedron 60 (2004) 3283.10.1016/j.tet.2004.01.083Search in Google Scholar

[7] V. de Halleux, J.P. Calbert, P. Brocorens, J. Cornil, J.P. Declerq, J.L. Bredas, Y. Geerts: Adv. Funct. Mater. 14 (2004) 649.10.1002/adfm.200400006Search in Google Scholar

[8] V. de Halleux: Ph.D. Thesis, Université Libre de Bruxelles (2002).Search in Google Scholar

[9] C. Tschierske: J. Mater. Chem. 11 (2001) 2647.10.1039/b102914mSearch in Google Scholar

[10] C. Tschierske: J. Mater. Chem. 8 (1998) 1485 and references therein.10.1039/a800946eSearch in Google Scholar

[11] C. Tschierske: Ann. Rep. Prog. Chem. Sect. 97 (2001) 191.10.1039/b101114fSearch in Google Scholar

[12] V. Percec, M. Glodde, T.K. Bera, Y. Miura, I. Shiyanovskaya, K.D. Singer, V.S.K. Balagurusamy, P.A. Heiney, I. Schnell, A. Rapp, H.W. Spiess, S.D. Hudson, H. Duan: Nature 417 (2002) 384.10.1038/nature01072Search in Google Scholar PubMed

[13] T.M. Long, T.M. Swager: Adv. Mater. 13 (2001) 601.10.1002/1521-4095(200104)13:8<601::AID-ADMA601>3.0.CO;2-VSearch in Google Scholar

[14] M. Lehmann, R.I. Gearba, M.H.J. Koch, D. Ivanov: Chem. Mater. 16 (2004) 374.10.1021/cm034487xSearch in Google Scholar

[15] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff: J. Am. Chem. Soc. 144 (1992) 110024.Search in Google Scholar

[16] M.J.S. Dewar, W. Thiel: J. Am. Chem. Soc. 99 (1977) 4499.10.1021/ja00455a049Search in Google Scholar

[17] J.P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar

[18] Gaussian 03, Revision C.02, M.J. Frisch et al., Gaussian, Inc., Wallingford CT, 2004.Search in Google Scholar

[19] A. Hiraya, K. Shobatake: J. Chem. Phys. 94 (1991) 7700.10.1063/1.460155Search in Google Scholar

[20] E.G. Cox: Rev. Mod. Phys. 30 (1958) 159.10.1103/RevModPhys.30.159Search in Google Scholar

[21] N.H. Hartshorne, A. Stuart: “Crystals and the Polarising Microscope”, Edward Arnolds and Company, London (1952) 151.Search in Google Scholar

[22] A. Miani, E. Cané, P. Palmieri, A. Trombetti, N. Handy: J. Chem. Phys. 112 (2000) 248.10.1063/1.480577Search in Google Scholar

Received: 2005-05-20
Accepted: 2005-06-25
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Kösterpreis
  3. Award/Preisverleihung
  4. Editorial
  5. Editorial
  6. Articles Basic
  7. Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
  8. Application of factor analysis in electron spectrometry (AES, XPS) for materials science
  9. Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components
  10. Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
  11. Articles Applied
  12. Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering
  13. Local texture and back-end defect in hot extruded AZ91 magnesium alloy
  14. A comparison of thermal stability in nanocrystalline Ni- and Co-based materials
  15. Microstructure and phase formation of Heusler thin film compounds
  16. Correlation between the average composition of coherent superlattice and the GMR properties of electrodeposited Co–Cu/Cu multilayers
  17. Articles Basic
  18. Towards a description of complex pearlite structures
  19. Modeling of axial strain in free-end torsion of textured copper
  20. Vacancies in plastically deformed copper
  21. An analytic and generalized formulation of the sin2 ψ-method
  22. Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion
  23. Articles Applied
  24. The local deformation behaviour of MMCs – an experimental study
  25. X-ray elastic constants determined by the combination of sin2 ψ and substrate-curvature methods
  26. Combining complementary techniques to study precipitates in steels
  27. Precipitation hardening in Mg–Zn–Sn alloys with minor additions of Ca and Si
  28. Notifications/Mitteilungen
  29. Personal
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0172/html
Scroll to top button