Home Vacancies in plastically deformed copper
Article
Licensed
Unlicensed Requires Authentication

Vacancies in plastically deformed copper

  • M. Zehetbauer EMAIL logo , E. Schafler and T. Ungár
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

In discussing hardening characteristics in terms of crystalline lattice defects, in most cases the properties and kinetics of dislocations and their arrangement have been considered. However, during plastic deformation also vacancies and/or vacancy-type defects are produced in very high densities which are typically close to those of vacancies in thermal equilibrium at the melting point. This paper presents measurements of deformation-induced vacancies in deformed copper which have been achieved by combined evaluation of resistometry, calorimetry and X-ray diffraction. The density of vacancies during and after severe plastic deformation (SPD) deformation is found to be markedly higher than in cases of conventional deformation and/or coarse-grained material, which is attributed to the particular conditions of SPD, i. e., the enhanced hydrostatic pressure as well as the changes in the deformation path. The use of synchrotron radiation allows to apply the XPA method for in-situ deformation monitoring of intrinsic structural parameters. This also includes deformation-induced vacancies, evaluated by the diffuse background of Bragg peak profiles.


Institut für Materialphysik, Universität Wien Ao. Univ. Prof. Dr. Michael Zehetbauer A-1090 Wien, Boltzmanngasse 5, Austria Tel.: +43 1 4277 51443 Fax: +43 1 4277 51440

Dedicated to Professor Dr. Dr. h. c. Hein Peter Stüwe on the occasion of his 75th birthday


  1. The Science Foundation of Austria (FWF) and the Hungarian National Science Foundation are acknowledged for financial support under projects P17095-N02 and OTKAT46990 & OTKAT43247.

References

[1] M.J. Zehetbauer, G. Steiner, E. Schafler, A. Korznikov, E. Korznikova, in: Z. Horita, T.C. Langdon (Eds.), Proc. 3rd Int. Conf. On Na-nomaterials by Severe Plastic Deformation - NanoSPD3, Fukuoka, Japan, Mater. Sei. Forum, accepted.Search in Google Scholar

[2] M. Kocer, F. Sachslehner, M. Müller, E. Schafler, M. Zehetbauer: Mater. Sei. Forum 210 - 213 (1996) 133.10.4028/www.scientific.net/MSF.210-213.133Search in Google Scholar

[3] B.R. Watts, in: F.R.N. Nabarro (Ed.), Dislocation in Solids, Vol. 8, Elsevier, Amsterdam (1989) 175.Search in Google Scholar

[4] H.J. Wollenberger; in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, Ch. 17, Elsevier, Amsterdam (1983) 1189.Search in Google Scholar

[5] M. Zehetbauer: Key Eng. Mater. 97–98 (1994) 287.10.4028/www.scientific.net/KEM.97-98.287Search in Google Scholar

[6] M.B. Beaver, D.L. Holt, A.L. Titchener: Progr. Mater. Sci. 17 (1973) 5.10.1016/0079-6425(73)90001-7Search in Google Scholar

[7] R.Z Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mater. Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[8] G.K. Williamson, W.H. Hall: Acta Metall. 1 (1953) 22.10.1016/0001-6160(53)90006-6Search in Google Scholar

[9] B.E. Warren, B.L. Averbach: J. Appl. Phys. 21 (1950) 595.10.1063/1.1699713Search in Google Scholar

[10] B.E. Warren: Progr. Metal Phys. 8 (1959) 147.10.1016/0502-8205(59)90015-2Search in Google Scholar

[11] T. Ungár, J. Gubicza, G. Ribarik, A. Borbely: J. Appl. Cryst. 34 (2001) 298.10.1107/S0021889801003715Search in Google Scholar

[12] G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng A 387 (2004) 343.10.1016/j.msea.2004.01.089Search in Google Scholar

[13] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, Vol. II., Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC, USA (1970) 1195.Search in Google Scholar

[14] T. Ungar, M. Zehetbauer: Scripta Mater. 35 (1996) 146710.1016/S1359-6462(96)00320-XSearch in Google Scholar

[15] T. Ungár, A. Borbely: Appl. Phys. Lett. 69 (1996) 3173.10.1063/1.117951Search in Google Scholar

[16] M. Müller: Ph.D. Thesis, University of Vienna (1994)Search in Google Scholar

[17] M. Zehetbauer, V. Seumer: Acta Metall. Mater. 41 (1993) 577.10.1016/0956-7151(93)90088-ASearch in Google Scholar

[18] M. Zehetbauer, H.P. Stuewe, A. Vorhauer, E. Schafler, J. Kohout: Adv. Eng. Mater. 5 (2003) 330.10.1002/adem.200310090Search in Google Scholar

[19] E. Schafler, G. Steiner, E. Korznikova, M. Kerber, M. J. Zehetbauer, Mater. Sci. Eng. A, accepted.Search in Google Scholar

[20] A. Seeger: Handbuch der Physik III. Springer-Verlag, Berlin (1955).Search in Google Scholar

[21] I. Kovács: Acta Metall. 15 (1967) 1731.10.1016/0001-6160(67)90064-8Search in Google Scholar

[22] A. Van den Beukel: Vacancies and Interstitials of Metals (1969), Amsterdam: North Holland, 427–479.Search in Google Scholar

[23] H.G. Van Bueren: Acta Metall. 3 (1955) 519.10.1016/0001-6160(55)90109-7Search in Google Scholar

[24] G. Saada, in: G. Thomas, J. Washburn (Eds.), Electron Microscopy and Strength of Crystals, New York, Interscience (1963).Search in Google Scholar

[25] U. Essmann, U. Goesele, H. Mughrabi: Phil. Mag. A 44 (1981) 405.10.1080/01418618108239541Search in Google Scholar

[26] E. Schafler, A. Dubravina, Z. Kovács, in: Y.T. Zhu et al. (Eds.), Proc. 2002 TMS Annual Meeting, Seattle, Int. Symp. on ultrafine grained materials, TMS publications, Seattle, USA (2002) 605.10.1002/9781118804537.ch68Search in Google Scholar

[27] M. Müller, M. Zehetbauer, A. Borbely, T. Ungar, in: Proc. 4th Europ. Conf. Adv. Mat. and Processes, EUROMAT ’95, Padua/Venice, Italy (1995) 305.Search in Google Scholar

[28] M. Zehetbauer, J. Kohout, A. Dubravina, E. Schafler, A. Vorhauer: J. Alloy Comp. 378 (2004) 329.10.1016/j.jallcom.2004.01.039Search in Google Scholar

[29] M.J. Zehetbauer, L. Zeipper, E. Schafler, in: Y. Zhu, V. Varyukhin (Eds.), Proc. NATO ARW “Nanostructured Materials by High-Pressure Severe Plastic Deformation”, Donetsk, Ukraine (2004), Kluwer Acad. Publ., in press.Search in Google Scholar

[30] Z.S. Basinski, J.S. Basinski: Acta Metall. Mater. 37 (1989) 1275.10.1016/0001-6160(89)90200-9Search in Google Scholar

[31] E. Schafler, K. Simon, S. Bernstorff, P. Hanák, G. Tichy, T. Ungár, M.J. Zehetbauer: Acta Mater. 53 (2005) 315.10.1016/j.actamat.2004.09.025Search in Google Scholar

[32] T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, M. Zehetbauer: Z. Metallk. 96 (2005) 578.10.3139/146.101073Search in Google Scholar

[33] H. Mughrabi: Acta metall. 31 (1983) 1367.10.1016/0001-6160(83)90007-XSearch in Google Scholar

Received: 2005-04-25
Accepted: 2005-06-14
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Kösterpreis
  3. Award/Preisverleihung
  4. Editorial
  5. Editorial
  6. Articles Basic
  7. Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
  8. Application of factor analysis in electron spectrometry (AES, XPS) for materials science
  9. Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components
  10. Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
  11. Articles Applied
  12. Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering
  13. Local texture and back-end defect in hot extruded AZ91 magnesium alloy
  14. A comparison of thermal stability in nanocrystalline Ni- and Co-based materials
  15. Microstructure and phase formation of Heusler thin film compounds
  16. Correlation between the average composition of coherent superlattice and the GMR properties of electrodeposited Co–Cu/Cu multilayers
  17. Articles Basic
  18. Towards a description of complex pearlite structures
  19. Modeling of axial strain in free-end torsion of textured copper
  20. Vacancies in plastically deformed copper
  21. An analytic and generalized formulation of the sin2 ψ-method
  22. Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion
  23. Articles Applied
  24. The local deformation behaviour of MMCs – an experimental study
  25. X-ray elastic constants determined by the combination of sin2 ψ and substrate-curvature methods
  26. Combining complementary techniques to study precipitates in steels
  27. Precipitation hardening in Mg–Zn–Sn alloys with minor additions of Ca and Si
  28. Notifications/Mitteilungen
  29. Personal
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0180/html
Scroll to top button