Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
-
Ehrenfried Zschech
, Hans-Jürgen Engelmann
Abstract
Both in situ microscopy experiments at embedded inlaid copper interconnect structures and numerical simulations based on a physical model provide information about electromigration-induced degradation mechanisms in on-chip interconnects. It is shown that the modification of the bonding strength of the weakest interface results in completely changed degradation and failure mechanisms. Transmission electron microscopy (TEM) images of standard Cu/SiNx interfaces are compared with strengthened interfaces, e. g., after applying an additional metal coating or a self-assembled monolayer (SAM) on top of the polished copper lines. The changed degradation mechanisms as observed with the in situ scanning electron microscopy (SEM) experiment and as predicted based on the numerical simulations are explained based on TEM images.
References
[1] P.S. Ho, K.D. Lee, E.T. Ogawa, S. Yoon, X. Lu, in: Characterization and Metrology for ULSI Technology, D.G. Seiler et al. (Eds.), AIP Conf. Proc. (AIP: Melville, NY, 2003) 53310.1063/1.1622523Search in Google Scholar
[2] R. Spolenak, E. Zschech,in: K. Wetzig, C. M. Schneider (Eds.), Metal Based Thin Films for Electronics, Wiley-VCH Weinheim (2003) 7.10.1002/3527602534.ch2Search in Google Scholar
[3] E. Zschech, M.A. Meyer, E. Langer: Proc. MRS Spring, 812 (2004) F7.5.1.10.1557/PROC-812-F7.5Search in Google Scholar
[4] C.K. Hu, S.G. Malhotra, L. Gignac: Electrochem. Soc. Proc. 31 (1999) 206.Search in Google Scholar
[5] E.T. Ogawa, K.D. Lee, V.A. Blaschke, P.S. Ho: IEEE Transaction on Reliability 51 (2002) 403.10.1109/TR.2002.804737Search in Google Scholar
[6] C.K. Hu, R. Rosenberg, K.L. Lee: Appl. Phys. Lett. 74 (1999) 2945.10.1063/1.123974Search in Google Scholar
[7] D. Edelstein, C. Uzoh, C. Cabral Jr., P. Dehaven, P. Buchwalter, A. Simon, E. Cooney, S. Malhotra, D. Klaus, H. Rathore, B. Agarwala, D. Nguyen: Proc. of the International Interconnect Technology Conference (IITC), Piscataway, NJ (2001) 910.1109/IITC.2001.930001Search in Google Scholar
[8] C.S. Hau-Riege, C.V. Thompson: Appl. Phys. Lett. 78 (2001) 3451.10.1063/1.1355304Search in Google Scholar
[9] K.D. Lee, E.T. Ogawa, H. Matsuhashi, P.R. Justison, K.S. Ko, P.S. Ho, V.A. Blaschke: Appl. Phys. Lett. 79 (2001) 3236.10.1063/1.1418034Search in Google Scholar
[10] C.K. Hu, L. Gignac, S.G. Malhotra, R. Rosenberg: Appl. Phys. Lett. (2001) 904.10.1063/1.1347400Search in Google Scholar
[11] S. Yokogawa, N. Okada, Y. Kakuhara, H. Takizawa: Microelectronics Reliability (2001) 1409.10.1016/S0026-2714(01)00162-7Search in Google Scholar
[12] E. Zschech, H. Geisler, I. Zienert, H. Prinz, E. Langer, M.A. Meyer, G. Schneider: Proc. of the Advanced Metallization Conference (AMC), San Diego (2002) 305.Search in Google Scholar
[13] A.V. Vairagar, A. Krishnamoorthy, K.N. Tu, S.G. Mhaisalkar, A.M. Gusak, M.A. Meyer: E. Zschech, Appl. Phys. Lett. 85 (2004) 2502.10.1063/1.1795978Search in Google Scholar
[14] E. Zschech, M.A. Meyer, H. Prinz, I. Zienert, M. Grafe, E. Langer, in: P.S. Ho et al. (Ed.), Stress-Induced Phenomena in Metal Interconnects, AIP Proc. 741 (2004) 196.10.1063/1.1845850Search in Google Scholar
[15] E. Zschech, V. Sukharev: Proc. Materials of Advanced Metallization (MAM), Dresden, in press (2005).Search in Google Scholar
[16] M.W. Lane, E.G. Liniger, J.R. Lloyd: Appl. Phys. Lett. 93 (2003) 1417.10.1063/1.1532942Search in Google Scholar
[17] M. Lane, R. Rosenberg: Mater. Res. Soc. Proc. 766 (2003).10.1557/PROC-766-E9.1Search in Google Scholar
[18] Y. Schacham Diamand, Y. Sverdlov, N. Petrov, Z. Li, N. Croitoru, A. Inberg, E. Gileadi, A. Kohn, M. Eizenberg: Proc. Electrochem. Soc. 99–34 (2000) 102.Search in Google Scholar
[19] C.K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, A.K. Stamper: Appl. Phys. Lett. 81 (2002) 178210.1063/1.1504491Search in Google Scholar
[20] C.K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A.K. Stamper, A. Domenicucci, X. Chen: Microelectronic Engineering 70 (2003) 406.10.1016/S0167-9317(03)00286-7Search in Google Scholar
[21] C.K. Hu, L.M. Gignac, E. Liniger, B. Herbst, D.L. Rath, S.T. Chen, S. Kaldor, D.A. Simon, W.T. Tseng: Appl. Phys. Lett. 83 (2003) 869.10.1063/1.1596375Search in Google Scholar
[22] M.A. Meyer, M. Grafe, H.J. Engelmann, E. Zschech: Materials for Advanced Metallization Conference (MAM), Brussels (2004).Search in Google Scholar
[23] M.A. Meyer, M. Herrmann, E. Langer, E. Zschech: Microelectronics Engineering 64 (2002) 375.10.1016/S0167-9317(02)00811-0Search in Google Scholar
[24] V. Sukharev, in: P.S. Ho et al. (Ed.), Stress-Induced Phenomena in Metal Interconnects, AIP Proc. 741 (2004) 85.10.1063/1.1845839Search in Google Scholar
[25] V. Sukharev, E. Zschech: 2004 IEEE Int. Integrated Reliability Workshop, Final Report (LakeTahoe, CA) (2004) 79.10.1109/IRWS.2004.1422744Search in Google Scholar
[26] V. Sukharev, E. Zschech: J. Appl. Phys. 96 (2004) 6337.10.1063/1.1805188Search in Google Scholar
[27] G. Ramanath, G. Cui, P.G. Ganesan, X. Guo, A.V. Ellis, M. Stukowski, K. Vijayamohanan, P. Doppelt, M. Lane: Appl. Phys. Lett. 83 (2003) 383.10.1063/1.1591232Search in Google Scholar
[28] C.-K. Hu, L. Gignac, E. Liniger, R. Rosenberg: J. Electrochem. Soc. 149 (2002) G408.10.1149/1.1482057Search in Google Scholar
[29] E. Zschech, W. Blum, I. Zienert, P.R. Besser: Z. Metallkd. 92 (2001) 803.10.1515/ijmr-2001-0147Search in Google Scholar
[30] B. Bokstein: Diffusion in metals, Nauka Publ., Moscow (1978)Search in Google Scholar
[31] E. Zschech, M.A. Meyer, I. Zienert, H. Prinz, E. Langer, H. Geisler, H.J. Engelmann: Proc. of the 3rd Int. Conf. on Semiconductor Technology (ISCT), Shanghai (2004) 386.Search in Google Scholar
[32] C.K. Hu, L.M. Gignac, E. Liniger, B. Herbst, D.L. Rath, S.T. Chen, S. Kaldor, A. Simon, W.T. Tseng: Appl. Phys. Lett. 83 (2003) 869.10.1063/1.1596375Search in Google Scholar
[33] C.K. Hu, R. Rosenberg, in: P.S. Ho et al. (Ed.), Stress-Induced Phenomena in Metal Interconnects, AIP Proc. 741 (2004) 97.10.1063/1.1845840Search in Google Scholar
[34] N.L. Peterson: J. Nuclear Maters 69&70 (1976) 3.10.1016/0022-3115(78)90234-9Search in Google Scholar
[35] C.A. Macklift: Phys. Rev. B 109 (1958) 1964.10.1103/PhysRev.109.1964Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Kösterpreis
- Award/Preisverleihung
- Editorial
- Editorial
- Articles Basic
- Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
- Application of factor analysis in electron spectrometry (AES, XPS) for materials science
- Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components
- Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
- Articles Applied
- Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering
- Local texture and back-end defect in hot extruded AZ91 magnesium alloy
- A comparison of thermal stability in nanocrystalline Ni- and Co-based materials
- Microstructure and phase formation of Heusler thin film compounds
- Correlation between the average composition of coherent superlattice and the GMR properties of electrodeposited Co–Cu/Cu multilayers
- Articles Basic
- Towards a description of complex pearlite structures
- Modeling of axial strain in free-end torsion of textured copper
- Vacancies in plastically deformed copper
- An analytic and generalized formulation of the sin2 ψ-method
- Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion
- Articles Applied
- The local deformation behaviour of MMCs – an experimental study
- X-ray elastic constants determined by the combination of sin2 ψ and substrate-curvature methods
- Combining complementary techniques to study precipitates in steels
- Precipitation hardening in Mg–Zn–Sn alloys with minor additions of Ca and Si
- Notifications/Mitteilungen
- Personal
Articles in the same Issue
- Frontmatter
- Kösterpreis
- Award/Preisverleihung
- Editorial
- Editorial
- Articles Basic
- Effect of interface strength on electromigration-induced inlaid copper interconnect degradation: Experiment and simulation
- Application of factor analysis in electron spectrometry (AES, XPS) for materials science
- Focussing and defocussing effects at radio frequency glow discharge optical emission spectroscopy analyses of thin films with partly nonconductive components
- Semi-flexible star-shaped molecules: conformational analysis of nano-segregated mesogens forming columnar liquid-crystal phases
- Articles Applied
- Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering
- Local texture and back-end defect in hot extruded AZ91 magnesium alloy
- A comparison of thermal stability in nanocrystalline Ni- and Co-based materials
- Microstructure and phase formation of Heusler thin film compounds
- Correlation between the average composition of coherent superlattice and the GMR properties of electrodeposited Co–Cu/Cu multilayers
- Articles Basic
- Towards a description of complex pearlite structures
- Modeling of axial strain in free-end torsion of textured copper
- Vacancies in plastically deformed copper
- An analytic and generalized formulation of the sin2 ψ-method
- Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion
- Articles Applied
- The local deformation behaviour of MMCs – an experimental study
- X-ray elastic constants determined by the combination of sin2 ψ and substrate-curvature methods
- Combining complementary techniques to study precipitates in steels
- Precipitation hardening in Mg–Zn–Sn alloys with minor additions of Ca and Si
- Notifications/Mitteilungen
- Personal