Abstract
In this paper, the research progress of zirconium (Zr) alloys is critically reviewed from the aspects of application, development status, and degradation mechanism in a nuclear environment. The review focused on the application of Zr alloys in the nuclear industry, which are widely used due to their low thermal neutron absorption, good corrosion resistance, and excellent mechanical properties. However, with the increasing requirements in the chemical and medical fields, the application of Zr alloys in these non-nuclear fields is growing due to their excellent properties like good corrosion resistance and low thermal expansion coefficient, as summarized in this review. Additionally, the degradation mechanisms of Zr alloy exposed to a corrosive environment, i.e., corrosion and hydrogen uptake, and the role of alloying selection in minimizing these two phenomena is considered in this review, based on pretransition kinetics and the loss of oxide protectiveness at transition. This is corroborated by the discussion on alloying elements with beneficial and detrimental effects on the corrosion performance of Zr alloys, as well as elements with contradicting effects on Zr alloys corrosion performance owing to the discrepancies in literature. Overall, this review can be leveraged in future alloy design to further improve Zr alloys corrosion resistance in nuclear applications, thus ultimately improving their integrity.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. BOO: conceptualization, data curation, formal analysis, investigation, writing-original draft. ZL, LL, JW, E-HH: writing-reviewing and editing.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable. None of these tools was used in preparing this manuscript.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
Abriata, J.P., Garces, J., and Versaci, R. (1986). The Zr-O (zirconium-oxygen) system. Bull. Alloy Phase Diagr. 7: 116–124, https://doi.org/10.1007/bf02881546.Search in Google Scholar
Annand, K.J., MacLaren, I., and Gass, M. (2015). Utilizing dual EELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350°C pressurized water. J. Nucl. Mater. 465: 390–399, https://doi.org/10.1016/j.jnucmat.2015.06.022.Search in Google Scholar
Arima, T., Moriyama, K., Gaja, N., Furuya, H., Idemitsu, K., and Inagaki, Y. (1998). Oxidation kinetics of Zircaloy-2 between 450°C and 600°C in oxidizing atmosphere. J. Nucl. Mater. 257: 67–77, https://doi.org/10.1016/s0022-3115(98)00069-5.Search in Google Scholar
Bechade, J.L., Brenner, R., Goudeau, P., and Gailhanou, M. (2002). Influence of temperature on X-ray diffraction analysis of ZrO2 oxide layers formed on zirconium-based alloys using a synchrotron radiation. Mater. Sci. Forum 404: 803–808, https://doi.org/10.4028/www.scientific.net/msf.404-407.803.Search in Google Scholar
Bell, B.D.C., Murphy, S.T., Burr, P.A., Grimes, R.W., and Wenman, M.R. (2015). Accommodation of tin in tetragonal ZrO2. J. Appl. Phys. 117: 084901, https://doi.org/10.1063/1.4909505.Search in Google Scholar
Bouvier, P., Godlewski, J., and Lucazeau, G. (2002). A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation. J. Nucl. Mater. 300: 118e126, https://doi.org/10.1016/s0022-3115(01)00756-5.Search in Google Scholar
Buscail, H., Rolland, R., Issartel, C., Perrier, S., and Latu-Romain, L. (2018). Stress determination by in situ X-ray diffraction – influence of water vapour on the Zircaloy-4 oxidation at high temperature. Corros. Sci. 134: 38–48, https://doi.org/10.1016/j.corsci.2018.02.002.Search in Google Scholar
Chang, K.I. and Hong, S.I. (2008). Effect of sulphur on the strengthening of a Zr–Nb alloy. J. Nucl. Mater. 373: 16–21, https://doi.org/10.1016/j.jnucmat.2007.04.045.Search in Google Scholar
Chang, W. (2003). Zirconium products: technical data sheet. Allegheny Technologies Inc., Pittsburgh.Search in Google Scholar
Chen, L., Li, J., Zhang, Y., Zhang, L.-C., Lua, W., Zhang, L., Wang, L., and Zhang, D. (2015). Effects of alloyed Si on the autoclave corrosion performance and periodic corrosion kinetics in Zr–Sn–Nb–Fe–O alloys. Corros. Sci. 100: 651–662, https://doi.org/10.1016/j.corsci.2015.08.043.Search in Google Scholar
Chen, L., Shen, P., Zhang, L., Lu, S., Chai, L., Yang, Z., and Zhang, L. (2018). Corrosion behavior of non-equilibrium Zr-Sn-Nb-Fe-Cu-O alloys in high temperature 0.01 M LiOH aqueous solution and degradation of the surface oxide films. Corros. Sci. 136: 221–230, https://doi.org/10.1016/j.corsci.2018.03.012.Search in Google Scholar
Christensen, M., Wolf, W., Freeman, C., Wimmer, E., Adamson, R.B., Hallstadius, L., Cantonwine, P.E., and Mader, E.V. (2013). Effect of alloying elements on the properties of Zr and the Zr-H system. J. Nucl. Mater. 445: 241–250, https://doi.org/10.1016/j.jnucmat.2013.10.040.Search in Google Scholar
Chun, Y.B., Hwang, S.K., Kwun, S.I., and Kim, M.H. (1999). Abnormal grain growth of Zr-1 wt.% Nb alloy and the effect of Mo addition. Scr. Mater. 40: 1165–1170, https://doi.org/10.1016/s1359-6462(99)00018-4.Search in Google Scholar
Couet, A., Motta, A.T., Comstock, R.J., and Paul, R.L. (2012). Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys. J. Nucl. Mater. 425: 211–217, https://doi.org/10.1016/j.jnucmat.2011.06.044.Search in Google Scholar
Couet, A., Motta, A.T., and Comstock, R.J. (2014). Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics. J. Nucl. Mater. 451: 1–13, https://doi.org/10.1016/j.jnucmat.2014.03.001.Search in Google Scholar
Couet, A., Motta, A., and Comstock, R. (2015a). Effect of alloying elements on hydrogen pickup in zirconium alloys. In: Zirconium in the nuclear industry, 17. ASTM Int, Hyderabad, Andhra Pradesh, India.10.1520/STP154320120215Search in Google Scholar
Couet, A., Motta, A.T., and Ambard, A. (2015b). The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys. Corros. Sci. 100: 73–84, https://doi.org/10.1016/j.corsci.2015.07.003.Search in Google Scholar
Cox, B. (1968). Effect of irradiation on the oxidation of zirconium alloys in high temperature aqueous environments: a review. J. Nucl. Mater. 28: 1–47, https://doi.org/10.1016/0022-3115(68)90055-x.Search in Google Scholar
Cox, B. (2005). Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J. Nucl. Mater. 336: 331–368, https://doi.org/10.1016/j.jnucmat.2004.09.029.Search in Google Scholar
Cox, B. and Pemsler, J.P. (1968). Diffusion of oxygen in growing zirconia films. J. Nucl. Mater. 28: 73–78, https://doi.org/10.1016/0022-3115(68)90058-5.Search in Google Scholar
Daum, R.S., Majumdar, S., and Billone, M.C. (2003). Mechanical properties of irradiated Zircaloy-4 for dry cask storage conditions and accidents. In: Nuclear safety research conference 2003, Washington, D.C., pp. 85–96.Search in Google Scholar
Dong, Y., Motta, A.T., and Marquis, E.A. (2013). Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J. Nucl. Mater. 442: 270–281, https://doi.org/10.1016/j.jnucmat.2013.08.055.Search in Google Scholar
Efaw, C.M., Vandegrift, J.L., Reynolds, M., Jaques, B.J., Hu, H., Xiong, H., and Hurley, M.F. (2020). Characterization of zirconium oxides part II: new insights on the growth of zirconia revealed through complementary high-resolution mapping techniques. Corros. Sci. 167: 108491, https://doi.org/10.1016/j.corsci.2020.108491.Search in Google Scholar
Ensor, B., Spengler, D.J., Seidensticker, J.R., Bajaj, R., Cai, Z., and Motta, A.T. (2019a). Microbeam synchrotron radiation diffraction and fluorescence of oxide layers formed on zirconium alloys at different corrosion temperatures. J. Nucl. Mater. 526: 151779, https://doi.org/10.1016/j.jnucmat.2019.151779.Search in Google Scholar
Ensor, B., Lucadamo, G., Seidensticker, J.R., Bajaj, R., Cai, Z., and Motta, A.T. (2019b). Characterization of long-term, in-reactor Zircaloy-4 corrosion coupons and the impact of flux, fluence, and temperature on oxide growth, stress development, phase formation, and grain size. In: 19th International symposium of zirconium in the nuclear industry. ASTM International, STP 1622. pp. 588–619.10.1520/STP162220190038Search in Google Scholar
Fromhold, A.T. (1978). Distribution of charge and potential through oxide films. J. Electrochem. Soc. 125: C118–C128.Search in Google Scholar
Fromhold, A.T. (1979). Easy insight into space-charge effects on steady-state transport in oxide films. Oxid.Met. 13: 475–479, https://doi.org/10.1007/bf00605111.Search in Google Scholar
Fuketa, T., Nagase, F., Ishijima, K., and Fujishiro, T. (1996). NSRRRIA experiments with high burnup PWR fuels. Nucl. Saf. 37: 328–342.10.2172/269705Search in Google Scholar
Garde, A.M. (1991). Enhancement of aqueous corrosion of Zircaloy-4 due to hydride precipitation at the metal-oxide interface, In: +Zirconium in the nuclear industry: ninth international symposium. ASTM International, West Conshohocken, ASTM STP 1132, pp. 566–594.10.1520/STP25527SSearch in Google Scholar
Garde, A.M., Slagle, H., and Mitchell, D. (2009). Hydrogen pick-up fraction for ZIRLO cladding corrosion and resulting impact on the cladding integrity. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 2009), Pap. 2136. ANS, La Grange Park, IL.Search in Google Scholar
Garner, A., Preuss, M., and Frankel, P. (2014a). A method for accurate texture determination of thin oxide films by glancing-angle laboratory X-ray diffraction. J. Appl. Crystallogr. 47: 575–583, https://doi.org/10.1107/s1600576714000569.Search in Google Scholar
Garner, A., Gholinia, A., Frankel, P., Gass, M., MacLaren, I., and Preuss, M. (2014b). The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy. Acta Mater. 80: 159–171, https://doi.org/10.1016/j.actamat.2014.07.062.Search in Google Scholar
Garner, A., Hu, J., Harte, A., Frankel, P., Grovenor, C., Lozano-Perez, S., and Preuss, M. (2015). The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys. Acta Mater. 99: 259–272, https://doi.org/10.1016/j.actamat.2015.08.005.Search in Google Scholar
Gabory, B.D. and Motta, A.T. (2013). Structure of Zircaloy 4 oxides formed during autoclave corrosion. In: Light water reactor fuel performance meeting (Top Fuel 2013), Pap. 8584. ANS, La Grange Park, IL, pp. 4–12.Search in Google Scholar
Gabory, B.D., Motta, A.T., and Wang, K. (2015). Transmission electron microscopy characterization of Zircaloy-4 and ZIRLOTM oxide layers. J. Nucl. Mater. 456: 272–280.10.1016/j.jnucmat.2014.09.073Search in Google Scholar
Gass, M., Fenwick, M., Hulme, H., Waters, M., Binks, P., Panteli, A., Chatterton, M., Allen, V., and Cole-Baker, A. (2018). Corrosion of Zircaloys: relating the microstructural observations to the corrosion kinetics. J. Nucl. Mater. 509: 343–354, https://doi.org/10.1016/j.jnucmat.2018.07.017.Search in Google Scholar
Goudeau, P., Faurie, D., Girault, B., Renault, P.O., Le Bourhis, E., Villain, P., Badawi, F., Castelnau, O., Brenner, R., Béchade, J.L., et al.. (2006). Strains, stresses and elastic properties in polycrystalline metallic thin films: in situ deformation combined with X-ray diffraction and simulation experiments. Mater. Sci. Forum 524: 735–740, https://doi.org/10.4028/www.scientific.net/msf.524-525.735.Search in Google Scholar
Harada, M. and Wakamatsu, R. (2008) The effect of hydrogen on the transition behavior of the corrosion rate of zirconium alloys, In: Zirconium in the nuclear industry: 15th international symposium. p. 384.10.1520/STP48146SSearch in Google Scholar
Hillner, E. (1977). Corrosion of zirconium-base alloys: an overview. In: Zirconium in the nuclear industry. ASTM Int, West Conshohocken, USA.10.1520/STP35573SSearch in Google Scholar
Hong, H.S., Moon, J.S., Kim, S.J., and Lee, K.S. (2001). Investigation on the oxidation characteristics of copper-added modified Zircaloy-4 alloys in pressurized water at 360°C. J. Nucl. Mater. 297: 113–119, https://doi.org/10.1016/s0022-3115(01)00601-8.Search in Google Scholar
Hu, J., Liu, J., Lozano-Perez, S., Grovenor, C.R.M., Christensen, M., Wolf, W., Wimmer, E., and Mader, E.V. (2019). Hydrogen pickup during oxidation in aqueous environments: the role of nano-pores and nano-pipes in zirconium oxide films. Acta Mater. 180: 105–115, https://doi.org/10.1016/j.actamat.2019.09.005.Search in Google Scholar
Hudson, D., Cerezo, A., and Smith, G.D.W. (2009). Zirconium oxidation on the atomic scale. Ultramicroscopy 109: 667–671, https://doi.org/10.1016/j.ultramic.2008.10.020.Search in Google Scholar PubMed
Hume-Rothery, W., Smallman, R.E., and Howarth, C.W. (1969). The structure of metals and alloys, 5th. The Institute of Metals, London.Search in Google Scholar
Ibrahim, E.F. and Cheadle, B.A. (1985). Development of zirconium alloys for pressure tubes in CANDU reactors. Can. Metall. Q. 24: 273–281, https://doi.org/10.1179/000844385795448533.Search in Google Scholar
Jiang, G., Xu, D., Yang, W., Liu, L., Zhi, Y., and Yang, J. (2022). High-temperature corrosion of Zr–Nb alloy for nuclear structural materials. Progress Nucl. Energy 154: 104490, https://doi.org/10.1016/j.pnucene.2022.104490.Search in Google Scholar
Jin, S., Leinenbach, C., Wang, J., Duarte, L.I., Delsante, S., Borzone, G., Scott, A., and Watson, A. (2012). Thermodynamic study and re-assessment of the Ge–Ni system. Calphad 38: 23–34, https://doi.org/10.1016/j.calphad.2012.03.003.Search in Google Scholar
Jin, Z., Yang, Y., Zhang, Z., Ma, X., Lv, J., Wang, F., Ma, M., Zhang, X., and Liu, R. (2016). Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr–Ti–Cu–Al bulk metallic glasses. J. Alloys Compd. 806: 668–675, https://doi.org/10.1016/j.jallcom.2019.07.240.Search in Google Scholar
Jung, Y., Seol, Y., Choi, B., Park, J., and Jeong, Y. (2010). Effect of Cr on the creep properties of zirconium alloys. J. Nucl. Mater. 396: 303–306, https://doi.org/10.1016/j.jnucmat.2009.10.058.Search in Google Scholar
Kaczorowski, D., Mardon, J.P., Barberis, P., Hoffmann, P.B., and Stevens, J. (2014). Impact of iron in M5TM. In: Comstock, R. and Barberis, P. (Eds.). Zirconium in the nuclear industry: 17th international symposium, STP 1543, pp. 159–183.10.1520/STP154320120195Search in Google Scholar
Kalavathi, V. and Bhuyan, R.K. (2019). A detailed study on zirconium and its applications in manufacturing process with combinations of other metals, oxides and alloys: a review. In: Mater. today: proceedings. Vol. 19, pp. 781–786.10.1016/j.matpr.2019.08.130Search in Google Scholar
Kammenzind, B.F., Gruber, J.A., Bajaj, R., and Smee, J.D. (2018). Neutron irradiation effects on the corrosion of Zircaloy-4 in a pressurized water reactor environment. Zirconium in the Nuclear Industry: 18th International Symposium, STP159720160085. ASTM Int, pp. 1318 https://doi.org/10.1520/stp159720160085.Search in Google Scholar
Kass, S. (1960). Hydrogen pickup in various zirconium alloys during corrosion exposure in high-temperature water and steam. J. Electrochem. Soc. 107: 594–597, https://doi.org/10.1149/1.2427781.Search in Google Scholar
Kass, S. (1964). The development of the zircaloys. Corrosion of zirconium alloys. ASTM Int, West Conshohocken, USA.10.1520/STP47070SSearch in Google Scholar
Kass, S. and Kirk, W.W. (1962). Corrosion and hydrogen absorption properties of nickel-free Zircaloy-2 and Zircaloy-4. ASM Trans. Q. 55: 77–100.Search in Google Scholar
Kautz, E., Gwalani, B., Yu, Z., Varga, T., Geelhood, K., Devaraj, A., and Senor, D. (2023). Investigating zirconium alloy corrosion with advanced experimental techniques: a review. J. Nucl. Mater. 585: 154586, https://doi.org/10.1016/j.jnucmat.2023.154586.Search in Google Scholar
Khan, M.A., Williams, R.L., and Williams, D.F. (1999). Conjoint corrosion and wear in titanium alloys. Biomaterials 20: 765–772, https://doi.org/10.1016/s0142-9612(98)00229-4.Search in Google Scholar PubMed
Kim, H.G., Park, S.Y., Lee, M.H., Jeong, Y.H., and Kim, S.D. (2008). Corrosion and microstructural characteristics of Zr-Nb alloys with different Nb contents. J. Nucl. Mater. 373: 429–432, https://doi.org/10.1016/j.jnucmat.2007.05.035.Search in Google Scholar
Kim, T., Kim, J., Choi, K.J., Yoo, S.C., Kim, S., and Kim, J.H. (2015). Phase transformation of oxide film in zirconium alloy in high temperature hydrogenated water. Corros. Sci. 99: 134–144, https://doi.org/10.1016/j.corsci.2015.06.034.Search in Google Scholar
Kobayashi, E., Doi, H., and Yoneyama, T. (1995). Evaluation of mechanical properties of dental casting TiZr based alloys. J. Japanese Soc. Dental Mater. Devices 14: 321–327.Search in Google Scholar
Kofstad, P. (1972). Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Mater. Corros. 25: 234–254.Search in Google Scholar
Lee, J.H., Hwang, S.K., Yasuda, K., and Kinoshita, C. (2001). Effect of molybdenum on electron radiation damage of Zr-base alloys. J. Nucl. Mater. 289: 334–337, https://doi.org/10.1016/s0022-3115(01)00435-4.Search in Google Scholar
Leech, W.J. and Yueh, K. (2001). The fuel duty index, a method to assess fuel performance. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 2001). ANS, La Grange Park, IL, pp. 2–16.Search in Google Scholar
Lemaignan, C. and Motta, A.T. (1994) Zirconium alloys in nuclear applications. In: Frost, B.R.T. (Ed.). Materials science and technology, Vol. 10B/II. VCH, Weinheim.Search in Google Scholar
Li, H., Glavicic, H.M., and Szpunar, J.A. (2004). A model of texture formation in ZrO2 films. Mater. Sci. Eng. A 366: 164–174, https://doi.org/10.1016/s0921-5093(02)00787-6.Search in Google Scholar
Liao, J., Yang, Z., Qiu, S., Peng, Q., Li, Z., and Zhang, J. (2018a). The correlation between tetragonal phase and the undulated metal/oxide interface in the oxide films of zirconium alloys. J. Nucl. Mater. 524: 101–110, https://doi.org/10.1016/j.jnucmat.2019.06.039.Search in Google Scholar
Liao, J.J., Yang, Z.B., Qiu, S.Y., Peng, Q., Li, Z.C., Zhou, M.S., and Liu, H. (2018b). Corrosion of new zirconium claddings in 500 °C/10.3 MPa steam: effects of alloying and metallography. Acta Metall. Sin. 13: 1e14.10.1007/s40195-018-0857-7Search in Google Scholar
Likhanskii, V. and Kolesnik, M. (2014). On the evolution of wave structure at the metal/oxide interface during oxidation of Zr alloys. Corros. Sci. 87: 416–420, https://doi.org/10.1016/j.corsci.2014.07.002.Search in Google Scholar
Long, M. and Rack, H.J. (1998). Titanium alloys in total joint replacement. A materials science perspective. Biomaterials 19: 1621–1639, https://doi.org/10.1016/s0142-9612(97)00146-4.Search in Google Scholar PubMed
Luo, J., Wang, J., Bitzek, E., Huang, J.Y., Zheng, H., Tong, L., Yang, Q., Li, J., and Mao, S.X. (2016). Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett. 16: 105–113, https://doi.org/10.1021/acs.nanolett.5b03070.Search in Google Scholar PubMed
Lustman, B. (1979). Zirconium technology – twenty years of evolution. In: 4th International symposium on zirconium in the nuclear industry. ASTM STP 681. ASTM Int, West Conshohocken, PA, pp. 5–18.10.1520/STP36669SSearch in Google Scholar
Ma, X., Toffolon-Masclet, C., Guilbert, T., Hamon, D., and Brachet, J.C. (2008). Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K. J. Nucl. Mater. 377: 359–369, https://doi.org/10.1016/j.jnucmat.2008.03.012.Search in Google Scholar
Mardon, J.P., Garner, G., Beslu, P., Charquet, D., and Senevat, J. (1997) Update on the development of advanced zirconium alloys for PWR fuel rod claddings. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 1997). ANS, La Grange Park, IL, pp. 405–412.Search in Google Scholar
Mardon, J.P., Garner, G.L., and Hoffmann, P.B. (2010) M5 a breakthrough in Zr alloy. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 2010), Pap. 069. ANS, La Grange Park, IL, pp. 65–72.Search in Google Scholar
Matsukawa, Y., Kitayama, S., Murakami, K., Shinohara, Y., Yoshida, K., Maeno, H., Yang, H.L., Toyama, T., Yasuda, K., Watanabe, H., et al.. (2017). Reassessment of oxidation-induced amorphization and dissolution of Nb precipitates in Zr-Nb nuclear fuel cladding tubes. Acta Mater. 127: 153–164, https://doi.org/10.1016/j.actamat.2017.01.032.Search in Google Scholar
Mitchell, D., Garde, A., and Davis, D. (2010). Optimized ZIRLO fuel performance in Westinghouse PWRs. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel). ANS, La Grange Park, IL, pp. 107–114.Search in Google Scholar
Motta, A.T., Yilmazbayhan, A., Comstock, R.J., Partezana, J., Sabol, G.P., Lai, B., and Cai, Z. (2005). Microstructure and growth mechanism of oxide layers formed on Zr alloys studied with micro-beam synchrotron radiation. J. ASTM Int. 2:1–26.10.1520/JAI12375Search in Google Scholar
Motta, A.T., Couet, A., and Comstock, R.J. (2015). Corrosion of zirconium alloys used for nuclear fuel cladding. Annu. Rev. Mater. Res. 45: 311–343, https://doi.org/10.1146/annurev-matsci-070214-020951.Search in Google Scholar
Muthu, S.M., Lee, H., Okonkwo, B.O., Wang, D., Jang, C., and Na, T. (2023). Accelerated formation of oxide layers on Zircaloy-4 utilizing air oxidation and comparison with water-corroded oxide layers. Materials 16: 7589, https://doi.org/10.3390/ma16247589.Search in Google Scholar PubMed PubMed Central
Ni, N., Lozano-Perez, S., Sykes, J., and Grovenor, C. (2011a). Quantitative EELS analysis of zirconium alloy metal/oxide interface. Ultramicroscopy 111: 123–130, https://doi.org/10.1016/j.ultramic.2010.10.020.Search in Google Scholar PubMed
Ni, N., Lozano-Perez, S., Sykes, J.M., Smith, G.D.W., and Grovenor, C.R.M. (2011b). Focused ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO™ alloys during corrosion in high temperature pressurized water. Corros. Sci. 53: 4073–4083, https://doi.org/10.1016/j.corsci.2011.08.013.Search in Google Scholar
Niimomi, M., Nakai, M., and Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomater. 8: 3888–3903, https://doi.org/10.1016/j.actbio.2012.06.037.Search in Google Scholar PubMed
Northwood, D.O. (1985). The development and applications of zirconium alloys. Mater. Des. 6: 58–70, https://doi.org/10.1016/0261-3069(85)90165-7.Search in Google Scholar
Okonkwo, B.O., Ming, H., Zhang, Z., Wang, J., Rahimi, E., Hosseinpour, S., and Davoodi, A. (2019). Microscale investigation of the correlation between microstructure and galvanic corrosion of low alloy steel A508 and its welded 309/308L stainless steel overlayer. Corros. Sci. 154: 49–60, https://doi.org/10.1016/j.corsci.2019.03.027.Search in Google Scholar
Okonkwo, B.O., Ming, H., Wang, J., Meng, F., Xu, X., and Han, E.H. (2021a). Microstructural characterization of LAS A508-309/308L stainless steel dissimilar weld metals. Int. J. Press. Vessel. Pip. 190: 104297, https://doi.org/10.1016/j.ijpvp.2020.104297.Search in Google Scholar
Okonkwo, B.O., Ming, H., Wang, J., Han, E.H., Rahimi, E., Davoodi, A., and Hosseinpour, S. (2021b). A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld. J. Mater. Sci. Technol. 78: 38–50, https://doi.org/10.1016/j.jmst.2020.10.044.Search in Google Scholar
Okonkwo, B.O., Ming, H., Meng, F., Wang, J., Xu, X., and Han, E.-H. (2021c). Galvanic corrosion study between low alloy steel A508 and 309/308L stainless steel dissimilar metals: a case study of the effects of oxide film and exposure time. J. Nucl. Mater. 548: 152853, https://doi.org/10.1016/j.jnucmat.2021.152853.Search in Google Scholar
Okonkwo, B.O., Jeong, C., Lee, H.-B., Jang, C., Rahimi, E., and Davoodi, A. (2023). Development and optimization of trivalent chromium electrodeposit on 304L stainless steel to improve corrosion resistance in chloride-containing environment. Heliyon 9: e22538, https://doi.org/10.1016/j.heliyon.2023.e22538.Search in Google Scholar PubMed PubMed Central
Okonkwo, B.O., Ming, H., Li, Z., Li, L., Chen, Y., Peng, J., and Wang, J. (2024). Insight into the galvanic corrosion behaviour of low alloy steel A508/309 L/308 L stainless steel dissimilar metal weld at different temperatures. Mater. Today Com. 38: 107963, https://doi.org/10.1016/j.mtcomm.2023.107963.Search in Google Scholar
Pan, G., Long, C.J., Garde, A.M., Atwood, A.R., and Foster, J.P. (2010) Advanced material for PWR application: AXIOM cladding. In: Proceedings of international conference on light water reactor fuel performance (TopFuel), ANS, La Grange Park, IL, pp. 74.Search in Google Scholar
Pan, G., Garde, A.M., Atwood, A.R., Kallstrom, R., and Jadernas, D. (2013). High burnup optimized ZIRLO cladding performance. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel), ANS, La Grange Park, IL, pp. 1–8.Search in Google Scholar
Peng, Q., Gartner, E., Busby, J.T., Motta, A.T., and Was, G.S. (2007). Corrosion behavior of model zirconium alloys in deaerated supercritical water at 500°C. Corrosion 63: 577–590, https://doi.org/10.5006/1.3278408.Search in Google Scholar
Pierron, O.N., Koss, D.A., Motta, A.T., and Chan, K.S. (2003). The influence of hydride blisters on the fracture of Zircaloy-4. J. Nucl. Mater. 322: 21–35, https://doi.org/10.1016/s0022-3115(03)00299-x.Search in Google Scholar
Polatidis, E., Frankel, P., Wei, J., Klaus, M., Comstock, R.J., Ambard, A., Lyon, S., Cottis, R.A., and Preuss, M. (2013). Residual stresses and tetragonal phase fraction characterization of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432: 102–112, https://doi.org/10.1016/j.jnucmat.2012.07.025.Search in Google Scholar
Ramasubramanian, N. (1975). Localized electron transport in corroding zirconium alloys. J. Nucl. Mater. 55: 34–54.10.1016/0022-3115(75)90148-8Search in Google Scholar
Ren, G., Li, J., and Wang, Q. (2017). A review: research on MR-compatible alloys in MRI. Acta Metallurgica Sinica 53: 1323–1330.Search in Google Scholar
Rickover, H., Geiger, L., and Lustman, B. (1975a). History of the development of zirconium alloys for use in nuclear reactors. Report TID-26740.Search in Google Scholar
Rickover, H.G., Geiger, L.D., and Lustman, B. (1975b). History of the development of zirconium alloys for use in nuclear reactors. Rep., Energy Res. Dev. Admin./Div. Naval React., Washington, DC.10.2172/4240391Search in Google Scholar
Romero, J., Hallstadius, L., Owaki, M., Pan, G., and Kataoka, K. (2014). Evolution of Westinghouse fuel cladding. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 2014). ANS, La Grange Park, IL, p. 100019.Search in Google Scholar
Schemel, J.H. (1977). ASTM manual on zirconium and hafnium. ASTM 639. American Society for Testing and Materials, Philadelphia, U.S.A.10.1520/STP639-EBSearch in Google Scholar
Shi, H., Guo, X., Li, J., Mao, J., and Lu, W. (2019). Effects of Mn addition on the corrosion behaviors of Zr-Sn-Nb-Fe-Mo alloys. Corros. Sci. 157: 167–179, https://doi.org/10.1016/j.corsci.2019.06.002.Search in Google Scholar
Shi, H., Li, J., Mao, J., and Lu, W. (2020). Corrosion behaviors of Zr-Sn-Nb-Fe-Mo alloys in pure water at 360 °C/18.6 MPa: influence of annealing temperature on the anti-corrosion properties. Corros. Sci. 163: 108255, https://doi.org/10.1016/j.corsci.2019.108255.Search in Google Scholar
Sabol, G.P. (2005). ZIRLO: an alloy development success. In: 14th International symposium on zirconium in the nuclear industry. ASTM STP 1467. ASTM Int., West Conshohocken, PA, pp. 3–24.10.1520/STP37500SSearch in Google Scholar
Sabol, G.P., Comstock, R.J., Weiner, R.A., Larouere, P., and Stanutz, R.N. (1994). In-reactor corrosion performance of ZIRLO and Zircaloy-4. In: 10th International symposium on zirconium in the nuclear industry. ASTM STP 1245. ASTM Int., West Conshohocken, PA, pp. 724–644.10.1520/STP15217SSearch in Google Scholar
Suyalatu, A., Nomura, N., Oya, K., Tanaka, Y., Kondo, R., Doi, H., Tsutsumi, Y., and Hanawa, T. (2010). Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater. 6: 1033–1038, https://doi.org/10.1016/j.actbio.2009.09.013.Search in Google Scholar PubMed
Than, Y.R., Grimes, R.W., Bell, B.D.C., and Wenman, M.R. (2020). Understanding the role of Fe, Cr and Ni in Zircaloy-2 with special focus on the role of Ni on hydrogen pickup. J. Nucl. Mater. 530: 151956, https://doi.org/10.1016/j.jnucmat.2019.151956.Search in Google Scholar
Tupin, M., Martin, F., Bisor, C., Verlet, R., Bossis, P., Chene, J., Jomard, F., Berger, P., Pascal, S., and Nuns, N. (2017). Hydrogen diffusion process in the oxides formed on zirconium alloys during corrosion in pressurized water reactor conditions. Corros. Sci. 116: 1–13, https://doi.org/10.1016/j.corsci.2016.10.027.Search in Google Scholar
Veshchunov, M.S. and Berdyshev, A.V. (1998). Modelling of hydrogen absorption by zirconium alloys during high temperature oxidation in steam. J. Nucl. Mater. 255: 250–262, https://doi.org/10.1016/s0022-3115(98)00018-x.Search in Google Scholar
Wang, K. (1996). The use of titanium for medical applications in the USA. Mater. Sci Eng. A. 213: 134–137, https://doi.org/10.1016/0921-5093(96)10243-4.Search in Google Scholar
Wang, Z., Zhou, B.X., Chen, B., Zhu, W., Wen, B., Wu, L., Tang, H.K., Fang, Z.Q., Li, Q., and Yao, M.Y. (2017). In-situ oxidation and short-time corrosion investigation on strain and dislocation during the generation and growth of ZrO2. Corros. Sci. 122: 26–31, https://doi.org/10.1016/j.corsci.2017.03.017.Search in Google Scholar
Warlimont, H. and Martienssen, W. (2018). Zirconium and zirconium alloys. Springer handbook of materials data. Springer, Cham.10.1007/978-3-319-69743-7Search in Google Scholar
Wei, J., Frankel, P., Polatidis, E., Blat, M., Ambard, A., Comstock, R.J., Hallstadius, L., Hudson, D., Smith, G.D.W., Grovenor, C.R.M., et al.. (2013). The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys. Acta Mater. 61: 4200–4214, https://doi.org/10.1016/j.actamat.2013.03.046.Search in Google Scholar
Whitmarsh, C.L. (1962). Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design. Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA.10.2172/4827123Search in Google Scholar
Yan, C.G., Wang, R.S., Wang, Y.L., Wang, X.T., and Bai, G.H. (2015). Effects of ion irradiation on microstructure and properties of zirconium alloys. A review. Nucl. Eng. Technol. 47: 323–331, https://doi.org/10.1016/j.net.2014.12.015.Search in Google Scholar
Yang, H., Shen, H., Matsukawa, Y., Satohb, Y., Kano, S., Zhao, Z., Li, Y., Li, F., and Abe, H. (2015). Effects of alloying elements (Sn, Nb, Cr, and Mo) on the microstructure and mechanical propertiesof zirconium alloys. J. of Nucl. Sci. Technol. 52: 1162–1173, https://doi.org/10.1080/00223131.2014.996622.Search in Google Scholar
Yilmazbayhan, A., Motta, A.T., Comstock, R.J., Sabol, G.P., Lai, B., and Cai, Z. (2004). Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate. J. Nucl. Mater. 324: 6e22, https://doi.org/10.1016/j.jnucmat.2003.08.038.Search in Google Scholar
Yoshino, A., Ono, S., Kido, T., and Onooka, H. (2014). Irradiation behavior of J-Alloy™ at high burnup. In: Proceedings of international conference on light water reactor fuel performance (Top Fuel 2014). ANS, La Grange Park, IL, p. 100153.Search in Google Scholar
Yu, Z., Xiong, C., Xue, P., Li, Y., Yuan, B.F., and Qu, W.T. (2016). Shape memory behavior of Ti20Zr-10Nb-5Al alloy subjected to annealing treatment. Rare Metals 35: 5–13, https://doi.org/10.1007/s12598-016-0799-z.Search in Google Scholar
Zhao, F., Ling, Y., Hu, Y., Wang, W., Bai, Y., Yang, Z., and Zhang, Z. (2024). The role of secondary phase precipitates in zircaloy corrosion: from point defects to local percolation. Corros. Sci. 229: 111856, https://doi.org/10.1016/j.corsci.2024.111856.Search in Google Scholar
Zhang, H., Kim, T., Swarts, J., Yu, Z., Su, R., Liu, L., Howland, W., Lucadamo, G., and Couet, A. (2022a). Nano-porosity effects on corrosion rate of Zr alloys using nanoscale microscopy coupled to machine learning. Corros. Sci. 208: 110660, https://doi.org/10.1016/j.corsci.2022.110660.Search in Google Scholar
Zhang, H., Su, R., Queylat, B., Kim, T., Lucadamo, G., Howland, W., and Couet, A. (2024). 3D reconstruction and interconnectivity quantification of the nano-porosity in the oxide layer of corroded Zr alloys. Corros. Sci. 226: 111630, https://doi.org/10.1016/j.corsci.2023.111630.Search in Google Scholar
Zhang, N., Xia, C., Qin, J., Li, Q., Zhang, X., and Liu, R. (2022b). Research progress of novel zirconium alloys with high strength and toughness. J. Metals, Mater. Miner. 32: 23–36, https://doi.org/10.55713/jmmm.v32i4.1526.Search in Google Scholar
Zhang, Y., Guo, T., and Li, Z. (2017). New high strength titanium alloy Ti Zr for dental use. West China J. Stomatology 17: 329–330.Search in Google Scholar
Zumpicchiat, G., Pascal, S., Tupin, M., and Berdin-Méric, C. (2015). Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress. Corros. Sci. 100: 209–221, https://doi.org/10.1016/j.corsci.2015.07.024.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston