Startseite Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods

  • Ruthramurthy Balachandran , Ong Boon Hoong , Wong Hin Yong , Tan Kar Ban , Yow Ho Kwang und Lee Wai Keat
Veröffentlicht/Copyright: 8. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A Pt/BST/NiFe/Cu multilayered capacitor was fabricated incorporating a polycrystalline Ba0.5Sr0.5TiO3 (BST) film deposited using the pulsed laser deposition technique. Qualitative X-ray diffraction analysis confirmed a perovskite structure for the deposited BST dielectric films which were fired at various temperatures. No intermediate phase was discernable with a post-annealing temperature of 750 °C and highly crystallized thin film was obtained at a post-annealing temperature of 800 °C. The fabricated capacitor with a BST film thickness of 665 nm exhibited respectable electrical performance with a dielectric constant, k of 657, and a dielectric loss, tan δ = 0.0137 at room temperature at an applied frequency of 1 MHz. The recorded charge storage density and leakage current density were 4.6 μC cm−2 and 33 nA cm−2, respectively, with ± 5 V bias.


* Correspondence address, R. Balachandran, Faculty of Engineering, Multimedia University63100, Cyberjaya, SelangorMalaysia, Tel.: +60-3-83125427, Fax: +60-3-83183029, E-mail:

References

[1] I.Mitsuaki, A.Kazuhide, K.Mitsuo, T.Shiro, F.Noburu: Appl. Phys. Lett.70 (1997) 1405. 10.1063/1.118590Suche in Google Scholar

[2] A. KunHo, B.Sunggi, K. SangSub: J. Appl. Phys.92 (2002) 2651. 10.1063/1.1495526Suche in Google Scholar

[3] D.Wu, A.Li, H.Ling, X.Yin, C.Ge, M.Wang, N.Ming: Appl. Surf. Sci.165 (2000) 309. 10.1016/S0169-4332(00)00310-XSuche in Google Scholar

[4] L.H.Parker, A.F.Tasch: IEEE Circuits and Devices Mag.6 (1990) 17. 10.1109/101.47582Suche in Google Scholar

[5] C.S.Hwang, B.T.Lee, C.S.Kang, J.W.Kim, K.H.Lee, H.-J.Cho, H.Hideki, W.D.Kim, S.I.Lee, Y.B.Roh, M.Y.Lee: J. Appl. Phys.83 (7) (1998) 3703. 10.1063/1.366595Suche in Google Scholar

[6] W.Y.Hsu, J.D.Luttmer, R.Tsu, S.Summerfelt, M.Bedekar, T.Tokumoto, J.Nulman: Appl. Phys. Lett.70 (1997) 3053. 10.1063/1.118746Suche in Google Scholar

[7] J.Miao, W.R.Chen, B.Chen, H.Yang, W.Peng, J.-P.Zhong, H.Wu, J.Yuan, B.Xu, X.-G.Qiu, L.-X.Cao, B.-R.Zhao: Chin. Phys. Lett.21 (6) (2004) 1139. 10.1088/0256-307X/21/6/045Suche in Google Scholar

[8] J.T.Dawley, P.G.Clem: Appl. Phys. Lett.81(16) (2002) 3028–3030. 10.1063/1.1516630Suche in Google Scholar

[9] Z.Qin, H.Gerhard, X.George, X.Edward: Energenius Inc. (2004).Suche in Google Scholar

[10] M.Lorenz, H.Hochmuth, M.Schallner, R.Heidinger, D.Spemann, M.Grundmann: Solid-State Electron.47 (2003) 21992203. 10.1016/S0038-1101(03)00194-1Suche in Google Scholar

[11] U.Soichi, X.Jiangeng, P.R.Barry, R.F.Stephen: Appl. Phys. Lett.84 (21) (2004) 4218–4220. 10.1063/1.1755833Suche in Google Scholar

[12] T.A.Bernacki, I.P.Koutsaroff, C.Divita: Passive Compon. Ind. Mag. (Sept./Oct.) (2004) 1113.Suche in Google Scholar

[13] H.-S.Kim, M.-H.Lim, H.-G.Kim, I.-D.Kim: Electrochem. Solid State Lett.7 (2004) J1J3. 10.1149/1.1625591Suche in Google Scholar

[14] S.Anuranjan, C.Valentin, M.H.Joshua, K.S.Rajiv: Appl. Phys. Lett.75 (1999) 3002. 10.1063/1.125215Suche in Google Scholar

[15] A.Kumar, S.G.Manavalan: Surf. Coat. Technol.198 (2005) 406. 10.1016/j.surfcoat.2004.10.044Suche in Google Scholar

[16] S.Saha, S.B.Krupanidhi: Mat. Sci. Eng. B57 (1999) 135. 10.1016/S0921-5107(98)00303-1Suche in Google Scholar

[17] A.Ioachim, M.I.Toacsan, L.Nedelcu, M.G.Banciu, C.A.Dutu, M.Buda, F.Sava, M.Popescu, N.Sscarisoreanu, M.Dinescu: Rom. J. Inf. Sci. Technol.10 (2007) 347354.Suche in Google Scholar

[18] M.-C.Chiu, C.-F.Cheng, W.-T.Wu, F.-S.Shieu: J. Electrochem. Soc.152 (2005) F66F70. 10.1149/1.1906024Suche in Google Scholar

[19] C.S.Hwang, S.O.Park, C.H.-J.Cho, C.S.Kang, H.-K.Kang, S.I.Lee, M.Y.Lee: Appl. Phys. Lett.67 (1995) 2819. 10.1063/1.114341Suche in Google Scholar

[20] S.C.Roy, M.C.Bhatnagar, G.L.Sharma, R.Manchanda, V.R.Balakrishnan: Ceram. Int.30 (2004) 2283. 10.1016/j.ceramint.2004.01.008Suche in Google Scholar

[21] K.Hochul, P.Sungho, K.Kyekyoon, Y.S.Man, C.Hyungsoo: Electrochem. Solid-State Lett.7 (2004) F77F80. 10.1149/1.1809551Suche in Google Scholar

[22] N.V.Giridharan, R.Jayavel, P.Ramasamy: Cryst. Res. Technol.36 (2001) 6572. 10.1002/1521-4079(200101)36:1<65::AID-CRAT65>3.0.CO;2-4Suche in Google Scholar

[23] Y.Takeshima, K.Tanaka, Y.Sakabe: Jpn. J. Appl. Phys.39 (2000) 5389. 10.1143/JJAP.39.5389Suche in Google Scholar

[24] S.Hwang: Mat. Sci. Eng. B56 (1998) 178. 10.1016/S0921-5107(98)00233-5Suche in Google Scholar

[25] S.Ezhilvalavan, T.Y.Tseng: Mater. Chem. Phys.65 (2000) 227. 10.1016/S0254-0584(00)00253-4Suche in Google Scholar

[26] A.I.Kingon, S.K.Streiffer: Ferroelectric Films and Devices, 4 (1) (1999) 39–44.Suche in Google Scholar

[27] J.F.Scott: Ann. Rev. Mater. Sci.28 (1) (1998) 79–100. 10.1146/annurev.matsci.28.1.79Suche in Google Scholar

[28] D.E.Kotecki, J.E.Baniecki, H.Shen, R.B.Laibowitz, K.L.Saenger, J.J.Lian, T.M.Shaw, S.D.Athavale, C.JrCabral, P.R.Duncombe, M.Gutsche, G.Kunkel, Y.-J.Park, Y.-Y.Wang, R.Wise: IBM J. Res. Develop.43(3) (1999) 367–382. 10.1147/rd.433.0367Suche in Google Scholar

[29] A.Kumar, S.G.Manavalan, V.Gurumurthy, S.Jeedigunta, T.Weller: Mat. Sci. Eng. B139 (2007) 177. 10.1016/j.mseb.2007.02.005Suche in Google Scholar

[30] O.Auciello, S.Saha, D.Y.Kaufman, S.K.Streiffer, W.Fan, B.Kabius, J.Im, P.Baumann: J. Electroceram.12 (2004) 119. 10.1023/B:JECR.0000034006.59246.5eSuche in Google Scholar

[31] R.Balachandran, H.K.Yow, B.H.Ong, K.B.Tan, K.Anuar, W.Z.Teoh, M. AhmadFauzi, S.Sreekantan, V.Swaminathan: J. Mater. Sci.46 (2011) 1806. 10.1007/s10853-010-5004-4Suche in Google Scholar

[32] R.Balachandran, H.K.Yow, B.H.Ong, K.B.Tan, K.Anuar, H.Y.Wong: Int. J. Electrochem. Sci.6 (2011) 3564.Suche in Google Scholar

[33] M.Nayak, S.Y.Lee, T.-Y.Tseng: Mater. Chem. Phys.77 (2003) 3442. 10.1016/S0254-0584(01)00566-1Suche in Google Scholar

[34] X.Zhu, W.Peng, J.Miao, D.Zheng: Mater. Lett.58 (2004) 2045. 10.1016/S0167-577X(03)00567-6Suche in Google Scholar

Received: 2013-09-09
Accepted: 2013-11-26
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111045/html
Button zum nach oben scrollen