Home Research trends in microwave dielectrics and factors affecting their properties: A review
Article
Licensed
Unlicensed Requires Authentication

Research trends in microwave dielectrics and factors affecting their properties: A review

  • Raz Muhammad , Yaseen Iqbal , Carlos Renato Rambo and Hidayatullah Khan
Published/Copyright: May 8, 2014
Become an author with De Gruyter Brill

Abstract

Ceramists are constantly looking for materials to be used as dielectric resonators in the telecommunication industry. These applications require materials with ∊r ∼ 4 – 120, Q × f0 > 10 000 GHz and τf ∼ 0 ppm K−1. Additionally, efforts are also underway to lower the sintering temperatures (e. g. ≤ 800 °C) to reduce processing and electrode costs. The simultaneous achievement of all the three properties mentioned above is difficult; nevertheless, some materials have been synthesized fulfilling the criteria for microwave applications. This study is an overview of various studies on materials for possible applications as microwave dielectrics and factors affecting their microwave properties. These factors include crystal structure, defects, fabrication route, and the type and concentration of substituents and additives.


* Correspondence address, Raz Muhammad, Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120, Pakistan, Tel.: +92-91-5611212, Fax: +92-91-921-6473, E-mail:

References

[1] S.B.Narang, S.Bahel: J. Ceram. Process. Res.11 (2010) 316.Search in Google Scholar

[2] M.T.Sebastian: Dielectric Materials for Wireless Communication, Elsevier (2008) 150.Search in Google Scholar

[3] J.Laskar, S.Chakraborty, M.Tentzeris, F.Bein, A.Pham, Advanced Integrated Communication Microsystems, John Wiley & Sons Ltd (2009) 8. 10.1002/9780470409794Search in Google Scholar

[4] H.Meier, T.Baier, G.Riha: IEEE Trans. Microw. Theory Tech.49 (2001) 743. 10.1109/22.915458Search in Google Scholar

[5] H.Ohsato: Ceram. Int.38S (2012) S141. 10.1016/j.ceramint.2011.04.068Search in Google Scholar

[6] H.Sreemoolanadhan, M.T.Sebastian, P.Mohanan: Mater. Res. Bull.30 (1995) 653. 10.1016/0025-5408(95)00070-4Search in Google Scholar

[7] F.J.Ubic: Processing and analysis of microwave dielectric resonators in the system BaO.Nd2O3.TiO2, Ph.D thesis, Department of Materials Science and Engineering, University of Sheffield, UK (1997).Search in Google Scholar

[8] H.Ohsato, T.Tsunooka, T.Sugiyama, K.Kakimoto, H.Ogawa: J. Electroceram. 17 (2006) 445. 10.1007/s10832-006-0452-6Search in Google Scholar

[9] Q.Zeng, W.Li, J.Shi, J.Guo, M.Zuo, W.Wu: J. Am. Ceram. Soc.89 (2006) 1733. 10.1111/j.1551-2916.2005.00754.xSearch in Google Scholar

[10] I.M.Reaney, R.Ubic: Ferroelectrics228 (1999) 23. 10.1080/00150199908226123Search in Google Scholar

[11] R.H.Mitchell: Perovskites: Modern and Ancient, Almaz Press (2002).Search in Google Scholar

[12] I.M.Reaney, E.L.Colla, N.Setter: Jpn. J. Appl. Phys.33 (1994) 3984. 10.1143/JJAP.33.3984Search in Google Scholar

[13] P.L.Wise, I.M.Reaney, W.E.Lee, T.J.Price, D.M.Iddles, D.S.Cannell: J. Eur. Ceram. Soc.21 (2001) 1723. 10.1016/S0955-2219(01)00102-9Search in Google Scholar

[14] I.M.Reaney, D.Iddles: J. Am. Ceram. Soc.89 (2006) 2063.Search in Google Scholar

[15] E.L.Colla, I.M.Reaney, N.Setter: J. Appl. Phys.74 (1993) 3414. 10.1063/1.354569Search in Google Scholar

[16] V.L.Gurevich, A.K.Tagantsev: Adv. Phys.40 (1991) 719. 10.1080/00018739100101552Search in Google Scholar

[17] V.M.Ferreira, J.L.Baptista, S.Kamba, J.Petzelt: J. Mater. Sci.28 (1993) 5894. 10.1007/BF00365198Search in Google Scholar

[18] R.D.Richtmyer: J. Appl. Phys.10 (1939) 391. 10.1063/1.1707320Search in Google Scholar

[19] A.Templeton, X.Wang, S.J.Penn, S.J.Webb, L.F.Cohen, N.M.Alford: J. Am. Ceram. Soc.83 (2000) 95. 10.1111/j.1151-2916.2000.tb01154.xSearch in Google Scholar

[20] D.J.Masee, R.A.Purcel, D.W.Readey: Proceedings of the IEEE59 (1971) 1628. 10.1109/PROC.1971.8508Search in Google Scholar

[21] H.Ohsato: J. Ceram. Soc. Jap.11 (2005) 703. 10.2109/jcersj.113.703Search in Google Scholar

[22] R.Ubic: J. Pak. Mater. Soc.4 (2010) 2.Search in Google Scholar

[23] Y.Higuchi, H.Tumara: J. Eur. Ceram. Soc.23 (2003) 2683. 10.1016/S0955-2219(03)00193-6Search in Google Scholar

[24] N.Kukutsu, A.Hirata, M.Yaita, K.Ajito, H.Takahashi, T.Kosugi, H.J.Song, A.Wakatsuki, Y.Muramoto, T.Nagatsuma, Y.Kado: IEEE MTT-S International (2010) 1134.Search in Google Scholar

[25] Y.Guo, H.Ohsato, K.Kakimoto: J. Eur. Ceram. Soc.26 (2006) 1827. 10.1016/j.jeurceramsoc.2005.09.008Search in Google Scholar

[26] Y.Ohishi, Y.Miyauchi, K.Kakimoto, H.Ohsato: Ferroelectrics327 (2005) 27. 10.1080/00150190500315384Search in Google Scholar

[27] R.M.Adams: Structure-composition-property Relations in B-site Deficient Hexagonal Perovskite Systems, Ph.D thesis, The Department of Chemical and Biological Sciences, University of Huddersfield UK (2010).Search in Google Scholar

[28] H.T.Yu, Y.D.Dai, M.J.Hu, D.B.Luo, M.H.Cao, H.X.Liu: Ferroelectrics356 (2007).Search in Google Scholar

[29] Y.Iqbal, A.Manan: J. Mater. Sci: Mater. Electron.23 (2012) 536. 10.1007/s10854-011-0432-8Search in Google Scholar

[30] H.Ohsato: J. Eur. Ceram. Soc.21 (2001) 2703. 10.1016/S0955-2219(01)00349-1Search in Google Scholar

[31] M.Valant, D.Suvorov: J. Am. Ceram. Soc.86 (2003) 939. 10.1111/j.1151-2916.2003.tb03401.xSearch in Google Scholar

[32] H.Y.Park, C.W.Ahn, H.C.Song, J.H.Lee, S.Nahm, K.Uchino, H.G.Lee, H.J.Lee: Appl. Phys. Lett.89 (2006) 62906. 10.1063/1.2335816Search in Google Scholar

[33] R.D.Shannon: Acta Cryst. A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar

[34] E.S.Kim, B.S.Chun, R.Freer, R.J.Cernik: J. Eur. Ceram. Soc.30 (2010) 1731. 10.1016/j.jeurceramsoc.2009.04.028Search in Google Scholar

[35] S.Hirahara, N.Fujikawa, S.Enami, T.Noshi: U.S. Pat. No. 5356844 (1994).Search in Google Scholar

[36] B.Jancar, D.Suvorov, M.Valant, G.Drazic: J. Eur. Ceram. Soc.22 (2003).Search in Google Scholar

[37] S.Murakawa: Jpn. Pat. No. 9843924 (1998).Search in Google Scholar

[38] T.Negas, G.Yeager, S.Bell, N.Coates, I.Minis: Am. Ceram. Soc. Bull.72 (1993) 80.Search in Google Scholar

[39] F.Roulland, R.Terras, S.Marinel: Mater. Sci. Eng. B.104 (2003) 156. 10.1016/S0921-5107(03)00189-2Search in Google Scholar

[40] R.C.Pullar, S.J.Penn, S.Wang, I.M.Reaney, N.M.Alford: J. Eur. Ceram. Soc.29 (2009) 419. 10.1016/j.jeurceramsoc.2008.06.019Search in Google Scholar

[41] H.U.Khan, Phase transition in Li-dopped Ag(NbxTa1-x)O3 perovskite ceramics, Ph.D thesis, Department of Materials Science and Engineering, University of Sheffield, UK (2011).Search in Google Scholar

[42] P.K.Davies: Curr. Opin. Solid State Mater. Sci.4 (1999) 467. 10.1016/S1359-0286(00)00002-4Search in Google Scholar

[43] F.Azough, C.Leach, R.Freer: J. Eur. Ceram. Soc.26 (2006) 2877. 10.1016/j.jeurceramsoc.2005.09.016Search in Google Scholar

[44] D.Barber, K.Moulding, J.Zhou, M.Li: J. Mater. Sci.32 (1997) 1531. 10.1023/A:1018574505601Search in Google Scholar

[45] R.Tarvin, P.K.Davies: J. Am. Ceram. Soc.87 (2004) 859. 10.1111/j.1551-2916.2004.00859.xSearch in Google Scholar

[46] J.J.Bian, K.Yan: J. Electroceram.21 (2008) 132. 10.1007/s10832-007-9089-3Search in Google Scholar

[47] I.Kagomiya, Y.Yamada, K.Kakimoto, H.Ohsato: IEEE Trans.55 (2008) 2582. DOI. 10.1109/TUFFC.2008.97.Search in Google Scholar

[48] K.Matsumoto, T.Hiuga, K.Takada, H.Ichimura: Proc. 6th IEEE Int. Symp of Appl. of Ferroelectrics (1986) 118.Search in Google Scholar

[49] B.Jancar, D.Suvorov, M.Valant: J. Mater. Sci. Lett.20 (2001) 71. 10.1023/A:1006775001070Search in Google Scholar

[50] R.Freer, F.Azough: J. Eur. Ceram. Soc.28 (2008) 1433. 10.1016/j.jeurceramsoc.2007.12.005Search in Google Scholar

[51] S.J.Penn, N.M.Alford, A.Templeton, X.Wang, M.Xu, M.Reece, K.Schrapel: J. Am. Ceram. Soc.80 (1997) 1885. 10.1111/j.1151-2916.1997.tb03066.xSearch in Google Scholar

[52] E.S.Kim, K.H.Yoon: J. Mater. Sci.29 (1994) 830. 10.1007/BF00446000Search in Google Scholar

[53] S.Kucheiko, H.J.Kim, S.J.Yoon, H.J.Jung: Jpn. J. Appl. Phys.36 (1997) 198. 10.1143/JJAP.36.198Search in Google Scholar

[54] D.M.Iddles, A.J.Bell, A.J.Moulson: J. Mater. Sci.27 (1992) 6303. 10.1007/BF00576276Search in Google Scholar

[55] H.Ohsato: J. Eur. Ceram. Soc.27 (2007) 2911. 10.1016/j.jeurceramsoc.2006.11.044Search in Google Scholar

[56] Y.Tohdo, K.Kakimoto, H.Ohsato, H.Yamada, T.Okawa: J. Eur. Ceram. Soc.26 (2006) 2039. 10.1016/j.jeurceramsoc.2005.09.098Search in Google Scholar

Received: 2013-04-14
Accepted: 2013-11-26
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111044/html
Scroll to top button