Startseite Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation

  • Natalia Resnina , Sergey Belyaev , Ksenia Anshukova und Roman Zhuravlev
Veröffentlicht/Copyright: 8. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study is devoted to the investigation of the ability of Ti48Ni52 alloys for production of effective work during thermal cycling over a narrow temperature range. Effective work output and efficiency were studied in Ti48Ni52 alloy subjected to thermal cycling through the temperature range of the B2 ↔ R martensitic transformation under different stress regimes. The optimal stress regimes for production of effective work output and maximum efficiency were found. The data obtained have shown that under optimal stress conditions (cooling of the sample under a stress of 100 MPa and heating under a stress of 400 MPa), one may develop a device with effective work being equal to 1.5 MJ m−3 and an efficiency of 2.5 %. During repeated thermal cycling under the optimal stress regime the alloy accumulated 8 % irreversible strain per 30 cycles. Starting from the 20th cycle the rate of irreversible strain accumulation was equal to ∼ 0.06 % per cycle.


* Correspondence address, Dr. Natalia Resnina, Universitetsky pr. 28, Saint-Petersburg, 198504, Russia, Tel.: +7-812-4284238, Fax: +7-812-4284238, E-mail:

References

[1] M.Hashimoto, M.Takeda, H.Sagawa, I.Chiba, K.Sato: J. Rob. Syst.2 (1985) 3.Suche in Google Scholar

[2] J.Van Humbeeck: Mater. Sci. Eng. A273–275 (1999) 134.10.1016/S0921-5093(99)00293-2Suche in Google Scholar

[3] D.E.Hodgson: Mater. Sci. Forum394–395 (2002) 69.10.4028/www.scientific.net/MSF.394-395.69Suche in Google Scholar

[4] N.B.Morgan: Mater. Sci. Eng. A378 (2004) 16. 10.1016/j.msea.2003.10.326Suche in Google Scholar

[5] A.I.Razov: Phys. Metal. Metallog.97 (2004) S97.Suche in Google Scholar

[6] D.J.Hartl, D.C.Lagoudas: J. Aero. Eng.221 (2007) 535.Suche in Google Scholar

[7] R.Salzbrenner: J. Mater. Sci.19 (1984) 1827. 10.1007/BF00550253Suche in Google Scholar

[8] M.Tanaka, K.Saito: J. Mech. Eng. Lab.47 (1993) 257.Suche in Google Scholar

[9] T.Kanada: J. Optoelectr. Adv. Mater.10 (2008) 1061.Suche in Google Scholar

[10] H.Tobushi, K.Date, K.Miyamoto: J. Solid Mech. Mater.4–7 (2010) 1094.Suche in Google Scholar

[11] H.Tobushi, K.Miyamoto, K.Mitsui: Trans. Jpn. Soc. Mech. Eng., Part A77 (2011) 754. 10.1299/kikaia.77.754Suche in Google Scholar

[12] S.Belyaev, N.Resnina, R.Zhuravlev: J. Alloys Compd. (2012); doi.org/10.1016/j.jallcom.2012.02.039.Suche in Google Scholar

[13] S.Belyaev, N.Resnina: Inter. J. Mater. Res.104 (2013) 11. 10.3139/146.110830Suche in Google Scholar

[14] K.Otsuka, X.Ren: Prog. Mater. Sci.50 (2005) 511. 10.1016/j.pmatsci.2004.10.001Suche in Google Scholar

[15] S.Miyazaki, Y.Igo, K.Otsuka: Acta Metall.34 (1986) 2045. 10.1016/0001-6160(86)90263-4Suche in Google Scholar

[16] P.G.McCormick, Y.Liu: Acta Metall. Mater.42 (1994) 2407. 10.1016/0956-7151(94)90319-0Suche in Google Scholar

[17] H.Matsumoto: J. Alloys Compd.350 (2003) 213. 10.1016/S0925-8388(02)00982-9Suche in Google Scholar

[18] H.Matsumoto: J. Alloys Compd.368 (2004) 182. 10.1016/S0925-8388(03)00730-8Suche in Google Scholar

[19] N.Resnina, S.Belyaev: J. Alloys Compd.486 (2009) 304. 10.1016/j.jallcom.2009.06.132Suche in Google Scholar

[20] C.Urbina, S.De la Flora, F.Gispert-Guirado, F.Ferrando: Intermetallics18 (2010) 1632. 10.1016/j.intermet.2010.04.020Suche in Google Scholar

[21] A.R.Pelton, G.H.Huang, P.Moine, R.Sinclair: Mater. Sci. Eng. A532 (2012) 130. 10.1016/j.msea.2011.10.073Suche in Google Scholar

[22] C.M.Wayman, I.Cornelis, K.Shimizu: Scr. Metall.6 (1972) 115. 10.1016/0036-9748(72)90261-XSuche in Google Scholar

[23] W.Tang, R.Sandström: Mater. Des.14 (1993) 103. 10.1016/0261-3069(93)90003-ESuche in Google Scholar

[24] Y.Li, X.Mi, B.Gao, J.Tan: Rare Met.27 (2008) 522. 10.1016/S1001-0521(08)60027-3Suche in Google Scholar

[25] B.Ye, B.S.Majumdar, I.Dutta: Acta Mater.57 (2009) 2403. 10.1016/j.actamat.2009.01.032Suche in Google Scholar

[26] C.N.Saikrishna, K.V.Ramaiah, S. AllamPrabhu, S.K.Bhaumik: Bull. Mater. Sci.32 (2009) 343. 10.1007/s12034-009-0049-1Suche in Google Scholar

[27] N.G.Jones, D.Dye: Intermetallics19 (2011) 1348. 10.1016/j.intermet.2011.03.032Suche in Google Scholar

[28] S.P.Belyaev, S.L.Kuzmin, V.A.Likhachev, S.M.Kovalev: Fiz. Met. Metalloved.63 (1987) 1017.Suche in Google Scholar

[29] J.Van Humbeeck: J. Phys. IV1 (1991) C4189. 10.1051/jp4:1991429Suche in Google Scholar

[30] Y.Furuya, Y.C.Park: Nondestr. Test. Eval.8–9 (1992) 541.Suche in Google Scholar

[31] G.Eggeler, E.Hornbogen, A.Yawny, A.Heckmann, M.Wagner: Mater. Sci. Eng. A378 (2004) 24. 10.1016/j.msea.2003.10.327Suche in Google Scholar

[32] I.Ohkata, H.Tamura: Mater. Res. Soc. Symp. – Proc.459 (1997) 345. 10.1557/PROC-459-345Suche in Google Scholar

[33] J.Uchil, K.K.Ganesh, K.K.Mahesh: Proc. SPIE Int. Soc. Opt. Eng.4701 (2002) 435.Suche in Google Scholar

[34] M.Tomozawa, K.Okutsu, H.Y.Kim, S.Miyazaki: Mater. Sci. Forum475–479 (2005) 2037.Suche in Google Scholar

[35] V.B.Krishnan, C.Bewerse, W.U.Notardonato, R.Vaidyanathan: AIP Conference Proceedings986 (2008) 3. 10.1063/1.2900374Suche in Google Scholar

[36] R.M.S.Martins, N.Schell, P.R.Gordo, M.J.P.Maneira, R.J.C.Silva, F.M. BrazFernandes: Vacuum83 (2009) 1299. 10.1016/j.vacuum.2009.03.027Suche in Google Scholar

[37] K.Lygin, S.Langbein, P.Labenda, T.Sadek: J. Mater. Eng. Perform.21 (2012) 2657. 10.1007/s11665-012-0285-1Suche in Google Scholar

[38] K.Lygin, P.Labenda, T.Sadek: Mater. Sci. Forum738–739 (2013) 584.Suche in Google Scholar

[39] V.Zel'dovich, G.Sobyanina, T.V.Novoselova: J. Phys. IV7 (1997) C5299. 10.1051/jp4:1997528Suche in Google Scholar

[40] S.P.Belyaev, S.L.Kuz'min, V.A.Lichachev: Strength Mater.16 (1985) 863. 10.1007/BF01529978Suche in Google Scholar

Received: 2013-09-27
Accepted: 2013-11-26
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111058/html
Button zum nach oben scrollen