Startseite Effects of rolling rate on microstructure and mechanical properties of Mg sheets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of rolling rate on microstructure and mechanical properties of Mg sheets

  • Qingwei Dai , Dingfei Zhang , Wei Lan , Xi Chen , Qichuan Chen und Delei Bai
Veröffentlicht/Copyright: 8. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study investigates the effects of rolling rate on the microstructure and mechanical properties of magnesium alloy sheets. AZ31 plates were rolled at speeds of 5, 10, 20 and 30 r · min−1 at room temperature. Optical microscopy, micro-hardness testing, and X-ray diffraction were carried out to characterize the material microstructure. Results show that the number of twin grains increases as the rolling rate increases. Simultaneously, the micro-hardness of the samples decreases, and the (0 001) basal texture is weakened. These results suggest the use of high rolling speed to practically reduce the formation of unfavorable basal texture in manufacturing magnesium alloy sheets.


* Correspondence address, Dr. Qingwei Dai, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China, Tel.: +86-23-65022425, Fax: +86-23-65022425, E-mail:

References

[1] Y.D.Qiao, X.Wang, Z.Y.Liu, E.D.Wang: Mater. Sci. Eng. A568 (2013) 202. 10.1016/j.msea.2013.01.036Suche in Google Scholar

[2] H.Yan, R.S.Chen, E.H.Han, in: Y.F.Han, J.P.Lin, C.B.Xiao, X.Q.Zeng (Eds.) High Performance Structure Materials, CMC 2012, Taiyuan, P.R. China, (2013) 369.Suche in Google Scholar

[3] C.Xu, M.Y.Zheng, K.Wu, E.D.Wang, G.H.Fan, S.W.Xu, S.Kamado, X.D.Liu, G.J.Wang, X.Y.Lv: Mater. Sci. Eng. A559 (2013) 615. 10.1016/j.msea.2012.08.089Suche in Google Scholar

[4] S.Q.Zhu, H.G.Yan, J.H.Chen, Y.Z.Wu, Y.G.Du, X.Z.Liao: Mater. Sci. Eng. A559 (2013) 765. 10.1016/j.msea.2012.09.022Suche in Google Scholar

[5] W.Z.Chen, Y.Yu, X.Wang, E.D.Wang, Z.Y.Liu: Mater. Sci. Eng. A575 (2013) 136. 10.1016/j.msea.2013.03.057Suche in Google Scholar

[6] J.H.Cho, S.S.Jeong, H.W.Kim, S.B.Kang: Mater. Sci. Eng. A566 (2013) 40. 10.1016/j.msea.2012.08.118Suche in Google Scholar

[7] D.Wu, W.N.Tang, R.S.Chen, E.H.Han: Trans. Nonferrous Met. Soc. China23 (2013) 301. 10.1016/S1003-6326(13)62454-1Suche in Google Scholar

[8] Q.W.Dai, D.F.Zhang, L.Fang, X.X.Xu, X.Chen: Mater. Sci. Technol.28 (2012) 415. 10.1179/1743284711Y.0000000067Suche in Google Scholar

[9] Q.W.Dai, D.F.Zhang, W.Lan, L.Fang, J.P.Zhang: Acta Metall. Sin.-Engl. Lett.23 (2010) 154.Suche in Google Scholar

[10] A.Mohan, S.K.Panigrahi, R.S.Mishra, R.Verma: J. Mater. Sci.48 (2013) 5633. 10.1007/s10853-013-7358-xSuche in Google Scholar

[11] Y.Chino, J.-S.Lee, K.Sassa, A.Kamiya, M.Mabuchi: Mater. Lett.60 (2006) 173. 10.1016/j.matlet.2005.08.012Suche in Google Scholar

[12] Y.Q.Cheng, Z.H.Chen, W.J.Xia: J. Mater. Sci.42 (2007) 3552. 10.1007/s10853-006-1119-zSuche in Google Scholar

[13] W.J.Kim, S.J.Yoo, Z.H.Chen, B.H.T.Jeong: Scr. Mater.60 (2009) 897. 10.1016/j.scriptamat.2008.09.001Suche in Google Scholar

[14] W.J.Kim, J.B.Lee, W.Y.Kim, H.T.Jeong, H.G.Jeong: Scr. Mater.56 (2007) 309. 10.1016/j.scriptamat.2006.09.034Suche in Google Scholar

[15] Y.D.Qiao, X.Wang, Z.Y.Liu, E.D.Wang: Mater. Sci. Eng. A578 (2013) 240. 10.1016/j.msea.2013.04.094Suche in Google Scholar

[16] J.Koike, T.Kobayashi, T.Mukai, H.Watanabe, M.Suzuki, K.Maruyama, K.Higashi: Acta Mater.51 (2003) 2055. 10.1016/S1359-6454(03)00005-3Suche in Google Scholar

[17] N.V.Dudamell, I.Ulacia, F.Galvez, S.Yi, J.Bohlen, D.Letzig, I.Hurtado, M.T.Perez-Prado: Acta Mater.59 (2011) 6949. 10.1016/j.actamat.2011.07.047Suche in Google Scholar

[18] M.S.Tsai, C.P.Chang: Mater. Sci. Technol.29 (2013) 759. 10.1179/1743284713Y.0000000237Suche in Google Scholar

[19] H.Yan, S.W.Xu, R.S.Chen, S.Kamado, T.Honma, E.H.Han: J. Alloys Compd.566 (2013) 98. 10.1016/j.jallcom.2013.03.008Suche in Google Scholar

Received: 2013-11-05
Accepted: 2014-01-30
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111060/html
Button zum nach oben scrollen