Startseite Technik The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets

  • Md. Zakaria Quadir , Oday Al-Buhamad , Kai D. Lau , Ryan Quarfoth , Lori Bassman , Paul R. Munroe und Michael Ferry
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A commercial purity Al alloy and an Al-0.3Sc (wt.%) alloy, the latter in either the supersaturated or artificially aged condition, were accumulative roll bonded at either 200 or 350°C to high strain to generate sheet materials consisting of 32 or 64 alternating layers of Al and Al(Sc). The microstructure and texture of the processed materials were investigated mainly using electron backscattered diffraction scanning electron microscopy and transmission electron microscopy. The deformation microstructure and texture of these two alloy combinations were strongly influenced by both the initial heat treatment condition of the Al(Sc) alloy whereby large-scale shear bands were generated during rolling when a dispersion of fine Al3Sc particles is present in the Al(Sc) layers. The effect of initial microstructure and processing temperature affected the subsequent recrystallization microstructure and texture of the Al/Al(Sc) composite during annealing at 350°C. Here, the Al(Sc) layers remain unrecrystallized in all materials with the Al layers undergoing continuous and discontinuous recrystallization after low and high temperature ARB, respectively. The lack of recrystallization in the Al(Sc) layers generated an alternating recrystallized/recovered microstructure in all materials.


* Correspondence address, Dr. Md Zakaria Quadir, Electron Microscope Unit, University of New South Wales (UNSW). Tel.: 61 (02) 9385 9752, Fax: 61 (02) 9385 6400, E-mail:

References

[1] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Suche in Google Scholar

[2] N.Tsuji, in: B.S.Altan (Ed.), Progress in Severe Plastic Deformation. NOVA Publishers IncNew York (2006) 545.Suche in Google Scholar

[3] Y.Saito, H.Utsunomiya, N.Tsuji, T.Sakai: Acta Mater.47 (1999) 579.10.1016/S1359-6454(98)00365-6Suche in Google Scholar

[4] N.Kamikawa, N.Tsuji, X.Huang, N.Hansen: Acta Mater.54 (2006) 3055.10.1016/j.actamat.2006.02.046Suche in Google Scholar

[5] N.Kamikawa, T.Sakai, N.Tsuji: Acta Mater.55 (2007) 5873.10.1016/j.actamat.2007.07.002Suche in Google Scholar

[6] L.S.Toropova, D.G.Eskin, M.L.Kharakterova, T.V.Dobatkina: Advanced Aluminum Alloys Containing Scandium: structure and properties. 1st edition, Gordon and Breach publishers (1998).Suche in Google Scholar

[7] D.N.Seidman, E.A.Marquis, D.C.Dunand: Acta Mater.50 (2002) 4021.10.1016/S1359-6454(02)00201-XSuche in Google Scholar

[8] G.E.Dieter: Mechanical Metallurgy, 3rd edition. McGraw-Hill, New York (1986).Suche in Google Scholar

[9] W.Y.Yeung, B.J.Duggan: Acta Metall.35 (1987) 541.10.1016/0001-6160(87)90259-8Suche in Google Scholar

[10] W.G.Rowe, in: Introduction to the principles of metalworking. 1st edition, Edward Arnold (publishers) (1968).Suche in Google Scholar

[11] S.L.Semiatin, H.R.Piehler: Metall. Trans.10 (1979) 97.10.1007/BF02686412Suche in Google Scholar

[12] I.Polmear: Light Alloys, 4th edition, Elsevier (2006).Suche in Google Scholar

[13] A.Crosky, D.Kelly, R.Li, X.Legrand, N.Huong, R.Ujjin: Composite Structures76 (2006) 260.10.1016/j.compstruct.2006.06.036Suche in Google Scholar

[14] B.Zeimetz, A.Pan, S.X.Dou: Physica C250 (1995) 170.10.1016/0921-4534(95)00364-9Suche in Google Scholar

[15] M.Z.Quadir, B.J.Duggan: ISIJ International46 (2006) 1495.Suche in Google Scholar

[16] Q.Z.Chen, M.Z.Quadir and B.J.Duggan: Phil. Mag.23 (2006) 3633.10.1080/14786430600728638Suche in Google Scholar

[17] F.J.Humphreys, M.Hatherly: Recrystallization and Related Annealing Phenomenon. 2nd edition, Elsevier (2004).10.1016/B978-008044164-1/50016-5Suche in Google Scholar

[18] M.Z.Quadir, O.Al-Buhamad, L.Bassman, M.Ferry: Acta Mater.55 (2007) 5438.10.1016/j.actamat.2007.06.021Suche in Google Scholar

[19] M.Z.Quadir, M.Ferry, O.Al-Buhamad, P.R.Munroe: Acta Mater.57 (2009) 29.10.1016/j.actamat.2008.08.056Suche in Google Scholar

[20] R.D.Doherty, J.W.Martin: J. Inst. Metals91 (1962) 332.Suche in Google Scholar

[21] R.Orsund, J.Hjelen, E.Nes: Scripta Metall.23 (1989) 1193.10.1016/0036-9748(89)90325-6Suche in Google Scholar

[22] I.M.Lifshitz, V.V.Slyozov: Phys. Chem. Solids19 (1961) 35.10.1016/0022-3697(61)90054-3Suche in Google Scholar

[23] C.Z.Wagner: Electrochemistry65 (1961) 581.10.1001/archopht.1961.01840020583023Suche in Google Scholar

[24] H.H.Jo, S.Fujikawa: Mater. Sci. Eng. A171 (1993) 151.10.1016/0921-5093(93)90401-YSuche in Google Scholar

[25] I.Andersen, Ø.Grong: Acta Mater.43 (1995) 2673.10.1016/0956-7151(94)00488-4Suche in Google Scholar

[26] K.Morii, H.Mecking, Y.Nakyama: Acta Metall.33 (1985) 379.10.1016/0001-6160(85)90080-XSuche in Google Scholar

[27] G.Von Vargha, G.Wassermann: Metallwirtschaft12 (1933) 511.Suche in Google Scholar

[28] C.H.Choi, D.N.Lee: Metall. Mater. Trans. A28 (1997) 2217.10.1007/s11661-997-0179-2Suche in Google Scholar

[29] C.H.Choi, J.W.Kwon, K.H.Oh, D.N.Lee: Acta Mater.45 (1997) 5119.10.1016/S1359-6454(97)00169-9Suche in Google Scholar

[30] M.Y.Huh, Y.S.Cho, O.Engler: Mater. Sci. Eng. A247 (1998) 152.10.1016/S0921-5093(97)00772-7Suche in Google Scholar

[31] O.Engler, P.Yang, X.W.Kong: Acta Mater.44 (1996) 3349.10.1016/1359-6454(95)00416-5Suche in Google Scholar

[32] A.Todayama, H.Inagaki: Mater. Sci. Forum.495–497 (2005) 603.10.4028/www.scientific.net/MSF.495-497.603Suche in Google Scholar

[33] Y.Nakyama, K.Morii: Acta Metall.35 (1987) 1747.10.1016/0001-6160(87)90120-9Suche in Google Scholar

[34] U.F.Kocks, H.Chandra: Acta Metall.30 (1982) 695.10.1016/0001-6160(82)90119-5Suche in Google Scholar

[35] P.Wagner, O.Engler, K.Lücke: Acta Metall. Mater.43 (1995) 3799.10.1016/0956-7151(95)90164-7Suche in Google Scholar

[36] O.Engler, K.Lücke: Scripta Metall.27 (1992) 1527.10.1016/0956-716X(92)90139-6Suche in Google Scholar

[37] M.Hölscher, D.Raabe, K.Lücke: Acta Metall. Mater.42 (1994) 879.10.1016/0956-7151(94)90283-6Suche in Google Scholar

[38] M.Koizumi, S.Kohara, H.Inagaki: Z. Metallkd.91 (2000) 88.Suche in Google Scholar

[39] M.Koizumi, H.Okudaira, H.Inagaki: Z. Metallkd.89 (1998) 424.Suche in Google Scholar

Received: 2009-3-27
Accepted: 2009-9-7
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110223/pdf
Button zum nach oben scrollen