Home Technology Technical parameters affecting grain refinement by high pressure torsion
Article
Licensed
Unlicensed Requires Authentication

Technical parameters affecting grain refinement by high pressure torsion

  • Anton Hohenwarter , Andrea Bachmaier , Bernd Gludovatz , Stephan Scheriau and Reinhard Pippan
Published/Copyright: June 11, 2013

Abstract

High pressure torsion is a well known and widespread processing technique for severe plastic deformation. The aim of high pressure torsion and other comparable techniques is to obtain ultrafine-grained or even nanocrystalline materials with enhanced mechanical and physical properties compared with their coarse-grained counterparts. Generally this refinement process is strongly influenced by processing parameters such as temperature or accumulated strain, but can also simply be affected by the entire experimental setup. Therefore, the benefits and limitations of the process with regard to grain refinement, homogeneity and specimen size, underlined with experimental results using different tools, will be discussed.


* Correspondence address Anton Hohenwarter, Erich Schmid Institute of Materials Science, Jahnstr. 12, A-8700 Leoben, Austria. Tel.: +43 3842 804 306, Fax: +43 3842 804 116, E-mail:

References

[1] P.W.Bridgman: J. Appl. Phys.14 (1943) 273283.10.1063/1.1714987Search in Google Scholar

[2] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103189.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[3] T.G.Langdon: Mater. Sci. Eng. A (503) (2009) 69.10.1016/j.msea.2007.09.106Search in Google Scholar

[4] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881981.10.1016/j.pmatsci.2006.02.003Search in Google Scholar

[5] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893979.10.1016/j.pmatsci.2008.03.002Search in Google Scholar

[6] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427556.10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[7] A.P.Zhilyaev, B.K.Kim, J.A.Szpunar, M.D.Barò, T.G.Langdon: Mater. Sci. Eng. A391 (2005) 377389.10.1016/j.msea.2004.09.030Search in Google Scholar

[8] M.Faleschini, H.Kreuzer, D.Kiener, R.Pippan: J. Nuclear Mater. (2007) 367370.10.1016/j.jnucmat.2007.03.079Search in Google Scholar

[9] F.Wetscher, A.Vorhauer, R.Stock, R.Pippan: Mater. Sci. Eng. A387 (2004) 809816.10.1016/j.msea.2004.01.096Search in Google Scholar

[10] T.Tokunaga, K.Kaneko, Z.Horita: Mater. Sci. Eng. A490 (2008) 300304.10.1016/j.msea.2008.02.022Search in Google Scholar

[11] Z.Lee, F.Zhou, R.Z.Valiev, E.J.Lavernia, S.R.Nutt: Scripta Mater.51 (2004) 209214.10.1016/j.scripta.mat.2004.04.016Search in Google Scholar

[12] X.Sauvage, P.Jessner, F.Vurpillot, R.Pippan: Scripta Mater.58 (2008) 11251128.10.1016/j.scriptamat.2008.02.010Search in Google Scholar

[13] R.Pippan, S.Scheriau, A.Hohenwarter, M.Hafok: Mater. Sci. Forum16–21 (2008) 584586.10.4028/www.scientific.net/MSF.584-586.16Search in Google Scholar

[14] H.P.Stüwe: Adv. Eng. Mater.5 (2003) 291295.10.1002/adem.20033110085Search in Google Scholar

[15] A.P.Zhilyaev, G.V.Nurislamova, B.K.Kim, M.D.Kim, M.D.Bar, J.S.Szpunar, T.G.Langdon: Acta Mater.51 (2003) 753765.10.1016/S1359-6454(02)00466-4Search in Google Scholar

[16] A.Vorhauer, R.Pippan: Scripta Mater.51 (2004) 921925.10.1016/j.scriptamat.2004.04.025Search in Google Scholar

[17] C.Xu, A.P.Zhilyaev, Z.Horita, T.G.Langdon: Mater. Sci. Forum3–8 (2008) 584586.10.4028/www.scientific.net/MSF.584-586.3Search in Google Scholar

[18] Y.Estrin, A.Molotnikov, C.H.J.Davies, R.Lapovok: J. Mech. Phys. Solids56 (2008) 11861202.10.1016/j.jmps.2007.10.004Search in Google Scholar

[19] M.J.Zehetbauer, H.P.Stüwe, A.Vorhauer, E.Schafler, J.Kohout: Adv. Eng. Mater.5 (2003) 330337.10.1002/adem.200310090Search in Google Scholar

[20] F.P.Bowden, D.Tabor: Friction and lubrication of solids, Clarendon Press, Oxford (1954).Search in Google Scholar

[21] F.Wetscher, A.Vorhauer, R.Pippan: Mater. Sci. Eng. A410–411 (2005) 213216.10.1016/j.msea.2005.08.027Search in Google Scholar

[22] Y.Harai, Y.Ito, Z.Horita: Scripta Mater.58 (2008) 469472.10.1016/j.scriptamat.2007.10.037Search in Google Scholar

[23] G.Sakai, K.Nakamura, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A406 (2005) 268273.10.1016j.msea.2005.06.049Search in Google Scholar

[24] A.Vorhauer, R.Pippan: Metall. Mater. Trans A (2008), 39, 417429.10.1017/s11661-007-9413-1Search in Google Scholar

Received: 2009-3-31
Accepted: 2009-9-7
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110224/html
Scroll to top button